000 | 03924nlm1a2200505 4500 | ||
---|---|---|---|
001 | 664826 | ||
005 | 20231030041943.0 | ||
035 | _a(RuTPU)RU\TPU\network\36011 | ||
090 | _a664826 | ||
100 | _a20210520a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aInfluence of the Heating Rate on the Activation of Coal and Lignite Oxidation by Copper Nitrate _fK. B. Larionov, I. V. Mishakov, A. V. Zenkov [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 16 tit.] | ||
330 | _aAdding copper nitrate Cu(NO3)2 is known to activate the oxidation of coal and lignite. In the present work, the change in its activating properties with increase in the heating rate is studied. The Cu(NO3)2 is first dissolved in a 50/50 (by volume) mixture of ethyl alcohol and water. Then it is applied to the fuel by steeping, to a content of 5 wt %. Activated oxidation is studied by thermal analysis, with different heating rates (2.5, 10, 20, and 40°C/min) in the temperature range 25–1000°C, at atmospheric pressure. With increase in heating rate, the catalytic effect of the additive is intensified: the initial (30–115°C) and final (85–180°C) oxidation temperatures fall, with increase in the maximum reaction rate. Mass-spectrometric analysis of the gaseous oxidation products shows that, in the presence of copper nitrate, increase in the heating rate leads to greater CO2 emission, with shorter oxidation time. The dependence of the activation energy on the degree of fuel conversion is determined by the Friedman method. The decrease in the mean activation energy when using Cu(NO3)2 is ~14 kJ/mol for lignite and ~35 kJ/mol for coal. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tCoke and Chemistry | ||
463 |
_tVol. 63, iss. 8 _v[P. 2-9] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _acoal | |
610 | 1 | _alignite | |
610 | 1 | _aheating rate | |
610 | 1 | _aactivated oxidation | |
610 | 1 | _acopper nitrate | |
610 | 1 | _athermogravimetric analysis | |
610 | 1 | _amass-spectrometric analysis | |
610 | 1 | _aуголь | |
610 | 1 | _aокисление | |
610 | 1 | _aтермогравиметрический анализ | |
610 | 1 | _aмасс-спектрометрический анализ | |
701 | 1 |
_aLarionov _bK. B. _cspecialist in the field of power engineering _ctechnician of Tomsk Polytechnic University _f1990- _gKirill Borisovich _2stltpush _3(RuTPU)RU\TPU\pers\35705 |
|
701 | 1 |
_aMishakov _bI. V. _cchemist _cAssociate Professor of Tomsk Polytechnic University, candidate of chemical sciences _f1977- _gIljya Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\36375 |
|
701 | 1 |
_aZenkov _bA. V. _cengineer at Tomsk Polytechnic University, assistant _cspecialist in the field of power engineering _f1992- _gAndrey Viktorovich _2stltpush _3(RuTPU)RU\TPU\pers\37816 |
|
701 | 1 |
_aSlusarskiy (Slyusarsky) _bK. V. _cspecialist in the field of power engineering _cassistant of Tomsk Polytechnic University _f1990- _gKonstantin Vitalievich _2stltpush _3(RuTPU)RU\TPU\pers\35634 |
|
701 | 1 |
_aGromov _bA. A. _cChemical Engineer _cProfessor of Tomsk Polytechnic University, Doctor of technical sciences _f1975- _gAleksandr Aleksandrovich _2stltpush _3(RuTPU)RU\TPU\pers\33059 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20210520 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.3103/S1068364X20080037 | |
942 | _cCF |