000 03536nlm1a2200385 4500
001 665005
005 20231030041949.0
035 _a(RuTPU)RU\TPU\network\36204
035 _aRU\TPU\network\33381
090 _a665005
100 _a20210621a2021 k y0engy50 ba
101 0 _aeng
102 _aDE
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aAnalysis of Deep Neural Networks for Detection of Coronary Artery Stenosis
_fV. V. Danilov, O. M. Gerget, K. Yu. Klyshnikov [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 19 tit.]
330 _aThis paper describes an approach based on machine learning technology that is of particular interest for the localization and characterization of both single focal stenoses and multivessel multifocal lesions. Due to the complexity of analyzing large amounts of data for the cardiac surgeon, we pay special attention to the analysis, training, and comparison of popular neural networks that classify and localize foci of stenosis on coronary angiography data. From the complete coronarography dataset collected at the Research Institute for Complex Issues of Cardiovascular Diseases, we retrospectively select data of 100 patients. For the automated analysis of the medical data, the paper considers in detail three models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, and Faster-RCNN NASNet), which differ in their architecture, complexity, and the number of weights. The models are compared in terms of their basic efficiency characteristics: accuracy, training time, and prediction time. The test results show that the training and prediction times are directly proportional to the complexity of the models. In this regard, Faster-RCNN NASNet exhibits the lowest prediction time (the average processing time for one image is 880 ms), while Faster-RCNN ResNet-50 V1 has the highest prediction accuracy. The latter model reaches the mean average precision (mAP) level of 0.92 on the validation dataset. On the other hand, SSD MobileNet V1 is the fastest model, capable of making predictions with a prediction rate of 23 fps.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tProgramming and Computer Software
463 _tVol. 47, iss. 3
_v[P. 153-160]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aDanilov
_bV. V.
_cspecialist in the field of informatics and computer technology
_cengineer of Tomsk Polytechnic University
_f1989-
_gVyacheslav Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\37831
701 1 _aGerget
_bO. M.
_cSpecialist in the field of informatics and computer technology
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1974-
_gOlga Mikhailovna
_2stltpush
_3(RuTPU)RU\TPU\pers\31430
701 1 _aKlyshnikov
_bK. Yu.
_gKirill Yurjevich
701 1 _aFrangi
_bA.
_gAlejandro
701 1 _aOvcharenko
_bE. A.
_gEvgeny Andreevich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20210621
_gRCR
856 4 _uhttps://doi.org/10.1134/S0361768821030038
942 _cCF