000 | 03536nlm1a2200385 4500 | ||
---|---|---|---|
001 | 665005 | ||
005 | 20231030041949.0 | ||
035 | _a(RuTPU)RU\TPU\network\36204 | ||
035 | _aRU\TPU\network\33381 | ||
090 | _a665005 | ||
100 | _a20210621a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aDE | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aAnalysis of Deep Neural Networks for Detection of Coronary Artery Stenosis _fV. V. Danilov, O. M. Gerget, K. Yu. Klyshnikov [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 19 tit.] | ||
330 | _aThis paper describes an approach based on machine learning technology that is of particular interest for the localization and characterization of both single focal stenoses and multivessel multifocal lesions. Due to the complexity of analyzing large amounts of data for the cardiac surgeon, we pay special attention to the analysis, training, and comparison of popular neural networks that classify and localize foci of stenosis on coronary angiography data. From the complete coronarography dataset collected at the Research Institute for Complex Issues of Cardiovascular Diseases, we retrospectively select data of 100 patients. For the automated analysis of the medical data, the paper considers in detail three models (SSD MobileNet V1, Faster-RCNN ResNet-50 V1, and Faster-RCNN NASNet), which differ in their architecture, complexity, and the number of weights. The models are compared in terms of their basic efficiency characteristics: accuracy, training time, and prediction time. The test results show that the training and prediction times are directly proportional to the complexity of the models. In this regard, Faster-RCNN NASNet exhibits the lowest prediction time (the average processing time for one image is 880 ms), while Faster-RCNN ResNet-50 V1 has the highest prediction accuracy. The latter model reaches the mean average precision (mAP) level of 0.92 on the validation dataset. On the other hand, SSD MobileNet V1 is the fastest model, capable of making predictions with a prediction rate of 23 fps. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tProgramming and Computer Software | ||
463 |
_tVol. 47, iss. 3 _v[P. 153-160] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
701 | 1 |
_aDanilov _bV. V. _cspecialist in the field of informatics and computer technology _cengineer of Tomsk Polytechnic University _f1989- _gVyacheslav Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\37831 |
|
701 | 1 |
_aGerget _bO. M. _cSpecialist in the field of informatics and computer technology _cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences _f1974- _gOlga Mikhailovna _2stltpush _3(RuTPU)RU\TPU\pers\31430 |
|
701 | 1 |
_aKlyshnikov _bK. Yu. _gKirill Yurjevich |
|
701 | 1 |
_aFrangi _bA. _gAlejandro |
|
701 | 1 |
_aOvcharenko _bE. A. _gEvgeny Andreevich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bОтделение информационных технологий _h7951 _2stltpush _3(RuTPU)RU\TPU\col\23515 |
801 | 2 |
_aRU _b63413507 _c20210621 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1134/S0361768821030038 | |
942 | _cCF |