000 | 04312nlm1a2200481 4500 | ||
---|---|---|---|
001 | 665139 | ||
005 | 20231030041953.0 | ||
035 | _a(RuTPU)RU\TPU\network\36338 | ||
035 | _aRU\TPU\network\35413 | ||
090 | _a665139 | ||
100 | _a20210824a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aIN | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSignificance Analysis of Connections in a Multivariable Mathematical Model of an Unmanned Underwater Vehicle for Common Motion Trajectories _fS. A. Gaivoronsky (Gayvoronsky), I. V. Khozhaev, T. A. Ezangina |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 20 tit.] | ||
330 | _aUnmanned underwater vehicles often are to move effectively in all six degrees of freedom during their missions. To control such motion effectively it is necessary to synthesize an automatic system of motion control which would manipulate thrusters of underwater vehicle considering interactions between all degrees of freedom. Synthesizing such control system is a complex problem requiring sophisticated methods of synthesis, which becomes more complex if it is necessary to consider uncertainty of systems parameters and its non-linearity of its elements during the synthesis procedure. This makes a problem of reducing a number of interconnections between manipulated parameters of underwater vehicle motion highly relevant. Authors propose a method of assessing a significance of each interconnection on a base of simulation modeling of underwater vehicle motion along most common trajectories used during mission planning. This will allow to replace a full-dimensional control system with a multimodal control system consisting of a set of low-dimensional control systems controlling the motion along of each common trajectory. This will lead to significant simplification of synthesizing controllers. The method is based on original models of elements of a motion control system. Further research will be dedicated to software implementation of the assessment method and testing it on an unmanned underwater vehicle prototype. | ||
461 | _tInternational Journal of Mechanical Engineering and Robotics Research | ||
463 |
_tVol. 10, iss. 1 _v[P. 7-11] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _amathematical modeling | |
610 | 1 | _aunderwater vehicle | |
610 | 1 | _amotion control system | |
610 | 1 | _aMIMO-system | |
610 | 1 | _asimulation modeling | |
610 | 1 | _aматематическое моделирование | |
610 | 1 | _aподводные аппараты | |
610 | 1 | _aуправление | |
610 | 1 | _aдвижение | |
610 | 1 | _aимитационное моделирование | |
700 | 1 |
_aGaivoronsky (Gayvoronsky) _bS. A. _cspecialist in the field of informatics and computer technology _cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences _f1961- _gSergey Anatolievich _2stltpush _3(RuTPU)RU\TPU\pers\32976 |
|
701 | 1 |
_aKhozhaev _bI. V. _cspecialist in the field of informatics and computer engineering _cengineer of Tomsk Polytechnic University _f1992- _gIvan Valerievich _2stltpush _3(RuTPU)RU\TPU\pers\35632 |
|
701 | 1 |
_aEzangina _bT. A. _cspecialist in the field of informatics and computer engineering _cengineer of Tomsk Polytechnic University _f1987- _gTatiana Aleksandrovna _2stltpush _3(RuTPU)RU\TPU\pers\35631 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bОтделение автоматизации и робототехники _h7952 _2stltpush _3(RuTPU)RU\TPU\col\23553 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bОтделение информационных технологий _h7951 _2stltpush _3(RuTPU)RU\TPU\col\23515 |
801 | 2 |
_aRU _b63413507 _c20210824 _gRCR |
|
856 | 4 | 0 | _uhttps://doi.org/10.18178/ijmerr.10.1.7-11 |
942 | _cCF |