000 02639nlm1a2200469 4500
001 665154
005 20231030041953.0
035 _a(RuTPU)RU\TPU\network\36353
035 _aRU\TPU\network\36139
090 _a665154
100 _a20210825a2021 k y0engy50 ba
101 0 _aeng
102 _aKZ
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe object tracking algorithm using dimensional based detection for public street environment
_fI. G. Matveev, K. A. Karpov, A. V. Yurchenko, E. Siemens
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 14 tit.]
330 _aThe paper proposes an approach to object tracking for public street environments using dimensional based object detection algorithm. Besides the tracking functionality, the proposed algorithm improves the detection accuracy of the dimensional based object detection algorithm. The proposed tracking approach uses detection information obtained from multiple cameras which are structured as a mesh network. Conducted experiments performed in a real-world environment have shown 10 to 40 percent higher detection accuracy that has proved the proposed concept. The tracking algorithm requires negligible computational resources that make the algorithm especially applicable for low-performance Internet of things infrastructure.
461 _tEurasian Physical Technical Journal
463 _tVol. 17, No. 2
_v[P. 123-127]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aobject tracking, smart city
610 1 _asmart city
610 1 _aobject detection
610 1 _astreet lighting
610 1 _aотслеживание
610 1 _aобъекты
610 1 _aУмный город
610 1 _aуличное освещение
610 1 _aалгоритмы
701 1 _aMatveev
_bI. G.
_gIvan Grigorjevich
701 1 _aKarpov
_bK. A.
_gKirill Aleksandrovich
701 1 _aYurchenko
_bA. V.
_cphysicist
_cProfessor of Tomsk Polytechnic University, candidate of technical sciences
_f1974-
_gAleksey Vasilievich
_2stltpush
_3(RuTPU)RU\TPU\pers\35053
701 1 _aSiemens
_bE.
_gEduard
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20210825
_gRCR
856 4 _uhttps://doi.org/10.31489/2020No2/123-127
942 _cCF