000 | 04408nlm0a2200625 4500 | ||
---|---|---|---|
001 | 665209 | ||
005 | 20231030041955.0 | ||
035 | _a(RuTPU)RU\TPU\network\36408 | ||
035 | _aRU\TPU\network\36323 | ||
090 | _a665209 | ||
100 | _a20210902a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _aa z 100zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 0 |
_aTwisted graphene in graphite: Impact on surface potential and chemical stability _fTran Tuan Hoang, R. D. Rodriguez (Rodriges) Contreras, M. Salerno [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 68 tit.] | ||
330 | _aHighly-oriented pyrolytic graphite (HOPG), i.e., the 3D stack of sp2-hybridized carbon sheets, is an attractive material thanks to its high electrical conductivity, chemical inertness, thermal stability, atomic-scale flatness, and ease of exfoliation. Despite an apparently ideal and uniform material, freshly cleaved HOPG shows domains in Kelvin probe force microscopy (KPFM) with surface potential contrast over 30 mV. We systematically investigated these domains using an integrated approach, including time-dependent KPFM and hyperspectral Raman imaging. The observed time-evolving domains are attributed to locally different hydrocarbon adsorption from the environment, driven by structural defects likely related to rotational mismatch, i.e., twisted layers. These defects affect the interlayer coupling between topmost graphene and the underlying layers. Our hypothesis was supported by Raman spectroscopy results, showing domains with G peak shifts and 2D line shape compatible with bilayer graphene. We attribute the selective sensitivity of our Raman spectroscopy results to the top graphene layers as resonances due to van Hove singularities. Our results show that the chemical and electrical properties of HOPG are far more complex than what is generally believed due to the broken symmetry at the top surface, giving rise to graphene bilayer-like behavior. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tCarbon | ||
463 |
_tVol. 176 _v[P. 431-439] _d2021 |
||
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _agraphene | |
610 | 1 | _agraphite | |
610 | 1 | _amoiré pattern | |
610 | 1 | _atwisted bi-layers | |
610 | 1 | _aKelvin probe force microscopy | |
610 | 1 | _aHOPG | |
610 | 1 | _asurface contamination | |
610 | 1 | _aRaman spectroscopy | |
610 | 1 | _acontact potential difference | |
610 | 1 | _aсиловая микроскопия | |
610 | 1 | _aграфены | |
610 | 1 | _aповерхностный потенциал | |
610 | 1 | _aзагрязнения | |
610 | 1 | _aповерхности | |
610 | 1 | _aспектроскопия | |
610 | 1 | _aграфиты | |
610 | 1 | _aхимическая стабильность | |
610 | 1 | _aповерхностный потенциал | |
701 | 0 |
_aTran Tuan Hoang _cspecialist in the field of nuclear technologies _cengineer of Tomsk Polytechnic University _f1993- _2stltpush _3(RuTPU)RU\TPU\pers\47572 |
|
701 | 1 |
_aRodriguez (Rodriges) Contreras _bR. D. _cVenezuelan physicist, doctor of science _cProfessor of Tomsk Polytechnic University _f1982- _gRaul David _2stltpush _3(RuTPU)RU\TPU\pers\39942 |
|
701 | 1 |
_aSalerno _bM. _gMarco |
|
701 | 1 |
_aMatkovic _bA. _gAleksandar |
|
701 | 1 |
_aTeichert _bCh. _gChristian |
|
701 | 1 |
_aSheremet _bE. S. _cphysicist _cProfessor of Tomsk Polytechnic University _f1988- _gEvgeniya Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\40027 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20230517 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.carbon.2021.01.152 | |
942 | _cCF |