000 04408nlm0a2200625 4500
001 665209
005 20231030041955.0
035 _a(RuTPU)RU\TPU\network\36408
035 _aRU\TPU\network\36323
090 _a665209
100 _a20210902a2021 k y0engy50 ba
101 0 _aeng
105 _aa z 100zy
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 0 _aTwisted graphene in graphite: Impact on surface potential and chemical stability
_fTran Tuan Hoang, R. D. Rodriguez (Rodriges) Contreras, M. Salerno [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 68 tit.]
330 _aHighly-oriented pyrolytic graphite (HOPG), i.e., the 3D stack of sp2-hybridized carbon sheets, is an attractive material thanks to its high electrical conductivity, chemical inertness, thermal stability, atomic-scale flatness, and ease of exfoliation. Despite an apparently ideal and uniform material, freshly cleaved HOPG shows domains in Kelvin probe force microscopy (KPFM) with surface potential contrast over 30 mV. We systematically investigated these domains using an integrated approach, including time-dependent KPFM and hyperspectral Raman imaging. The observed time-evolving domains are attributed to locally different hydrocarbon adsorption from the environment, driven by structural defects likely related to rotational mismatch, i.e., twisted layers. These defects affect the interlayer coupling between topmost graphene and the underlying layers. Our hypothesis was supported by Raman spectroscopy results, showing domains with G peak shifts and 2D line shape compatible with bilayer graphene. We attribute the selective sensitivity of our Raman spectroscopy results to the top graphene layers as resonances due to van Hove singularities. Our results show that the chemical and electrical properties of HOPG are far more complex than what is generally believed due to the broken symmetry at the top surface, giving rise to graphene bilayer-like behavior.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tCarbon
463 _tVol. 176
_v[P. 431-439]
_d2021
610 1 _aтруды учёных ТПУ
610 1 _aэлектронный ресурс
610 1 _agraphene
610 1 _agraphite
610 1 _amoiré pattern
610 1 _atwisted bi-layers
610 1 _aKelvin probe force microscopy
610 1 _aHOPG
610 1 _asurface contamination
610 1 _aRaman spectroscopy
610 1 _acontact potential difference
610 1 _aсиловая микроскопия
610 1 _aграфены
610 1 _aповерхностный потенциал
610 1 _aзагрязнения
610 1 _aповерхности
610 1 _aспектроскопия
610 1 _aграфиты
610 1 _aхимическая стабильность
610 1 _aповерхностный потенциал
701 0 _aTran Tuan Hoang
_cspecialist in the field of nuclear technologies
_cengineer of Tomsk Polytechnic University
_f1993-
_2stltpush
_3(RuTPU)RU\TPU\pers\47572
701 1 _aRodriguez (Rodriges) Contreras
_bR. D.
_cVenezuelan physicist, doctor of science
_cProfessor of Tomsk Polytechnic University
_f1982-
_gRaul David
_2stltpush
_3(RuTPU)RU\TPU\pers\39942
701 1 _aSalerno
_bM.
_gMarco
701 1 _aMatkovic
_bA.
_gAleksandar
701 1 _aTeichert
_bCh.
_gChristian
701 1 _aSheremet
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1988-
_gEvgeniya Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\40027
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20230517
_gRCR
856 4 _uhttps://doi.org/10.1016/j.carbon.2021.01.152
942 _cCF