000 | 04008nlm1a2200517 4500 | ||
---|---|---|---|
001 | 665214 | ||
005 | 20231030041955.0 | ||
035 | _a(RuTPU)RU\TPU\network\36413 | ||
035 | _aRU\TPU\network\34235 | ||
090 | _a665214 | ||
100 | _a20210902a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aConvection velocities in gas and liquid phases during fragmentation of droplets _fP. A. Strizhak, R. S. Volkov, O. Moussa [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 37 tit.] | ||
330 | _aThe paper presents experimental research findings for the convection velocities in the gas and liquid phases during micro-explosive fragmentation of droplets heated on a solid surface. The experiments were conducted with two types of bi-component droplets: emulsified and unmixed ones. A scheme with an induction heater in the temperature range of 75–550 °C was used. The convection velocities were recorded in droplets during heating, rapid evaporation, partial fragmentation in the puffing regime and full fragmentation in the micro-explosion regime. Typical shapes and dimensions of the origins of vortex formation were distinguished. The velocities of vapor outflow from the surface of the droplet and secondary fragments as a result of droplet breakup were established. Their variation ranges were determined. The effect of the surface temperature, droplet dimensions, component composition of liquid and type of droplets on these velocities was identified. The research findings were compared with the previous data obtained in experiments with a droplet fixed on a holder in a hot air flow. We showed threshold convection velocities in droplets sufficient for their breakup during puffing and micro-explosion regimes. General approximations were derived for the convection velocities in the droplets under study versus the substrate temperature. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tExperimental Thermal and Fluid Science | ||
463 |
_tVol. 129 _v[110476, 18 p.] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _adroplets | |
610 | 1 | _amicro-explosion | |
610 | 1 | _aconvection | |
610 | 1 | _avelocities | |
610 | 1 | _aparticle image velocimetry | |
610 | 1 | _aparticle tracking velocimetry | |
610 | 1 | _aкапли | |
610 | 1 | _aмикровзрывы | |
610 | 1 | _aконвекция | |
610 | 1 | _aскорости | |
701 | 1 |
_aStrizhak _bP. A. _cSpecialist in the field of heat power energy _cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) _f1985- _gPavel Alexandrovich _2stltpush _3(RuTPU)RU\TPU\pers\30871 |
|
701 | 1 |
_aVolkov _bR. S. _cspecialist in the field of power engineering _csenior lecturer, engineer of the Tomsk Polytechnic University, candidate of technical Sciences _f1987- _gRoman Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\33926 |
|
701 | 1 |
_aMoussa _bO. _gOmar |
|
701 | 1 |
_aTarlet _bD. _gDominique |
|
701 | 1 |
_aBellettre _bJ. _gJerome |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20210902 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.expthermflusci.2021.110476 | |
942 | _cCF |