000 03698nlm1a2200505 4500
001 665228
005 20231030041956.0
035 _a(RuTPU)RU\TPU\network\36427
035 _aRU\TPU\network\33886
090 _a665228
100 _a20210903a2021 k y0engy50 ba
101 0 _aeng
102 _aGB
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aThe application of machine learning to predictions of optical turbulence in the surface layer at Baikal Astrophysical Observatory
_fL. A. Bolbasova, A. A. Andrakhanov, A. Yu. Shikhovtsev
203 _aText
_celectronic
300 _aTitle screen
330 _aIn this study, we apply machine learning to predict optical turbulence in the surface layer at the Baikal Astrophysical Observatory. Advance knowledge of optical turbulence is important for maximizing the efficiency of adaptive optics systems, telescope operations, and the scheduling of the planned observations. Typically, optical turbulence is characterized by the structure constant of the refractive index of air C2nCn2⁠. The Monin-Obukhov similarity theory (MOST) provides a scientific basis for estimating the structure constant of the refractive index from meteorological variables in the surface layer. However, the MOST becomes unreliable for stable atmospheric conditions, which occurred for more periods regardless of the time of day at the Baikal Astrophysical Observatory. We propose the application of a neural network based on the group method of data handling (GMDH), one of the earliest deep-learning techniques, to predict the surface-layer refractive-index structure constant. The magnitudes of the predicted values of the structure constant of the refractive index and measurements are in agreement. Correlation coefficients ranging from 0.79-0.91 for a stably stratified atmosphere have been obtained. The explicit analytical expression is an advantage of the proposed approach, in contrast to many other machine-learning techniques that have a black-box model.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMonthly Notices of the Royal Astronomical Society
463 _tVol 504, iss. 4
_v[P. 6008–6017]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aturbulence
610 1 _aatmospheric effects
610 1 _ainstrumentation
610 1 _aadaptive optics
610 1 _asite testing
610 1 _atelescopes
610 1 _aтурбулентность
610 1 _aатмосферные явления
610 1 _aадаптивная оптика
610 1 _aтелескопы
610 1 _aмашинное обучение
610 1 _aприземные слои
610 1 _aастрофизические обсерватории
700 1 _aBolbasova
_bL. A.
_gLidiya Adolfovna
701 1 _aAndrakhanov
_bA. A.
_cSpecialist in the field of electrical engineering
_cAssistant of the Department of Tomsk Polytechnic University
_f1982-
_gAnatoliy Aleksandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\38561
701 1 _aShikhovtsev
_bA. Yu.
_gArtem Yurjevich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение автоматизации и робототехники
_h7952
_2stltpush
_3(RuTPU)RU\TPU\col\23553
801 2 _aRU
_b63413507
_c20210903
_gRCR
856 4 _uhttps://doi.org/10.1093/mnras/stab953
942 _cCF