000 | 03409nlm1a2200505 4500 | ||
---|---|---|---|
001 | 665246 | ||
005 | 20231030041956.0 | ||
035 | _a(RuTPU)RU\TPU\network\36445 | ||
035 | _aRU\TPU\network\34804 | ||
090 | _a665246 | ||
100 | _a20210906a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aHierarchical ZIFs@Al2O3 composite materials as effective heterogeneous catalysts _fXu Wei, Wang Jichao, Zhang Pan [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 23 tit.] | ||
330 | _aA facile growth of microporous ZIFs, such as ZIF-67, ZIF-8 into mesoporous alumina to obtain hierarchical micro/mesoporous ZIFs@Al2O3 is achieved. Several analysis techniques, such as powder-XRD, SEM, ICP, and gas adsorption, etc. are applied to characterize the composite materials. The use of a surfactant is the critical parameter to functionalize and assist the nano-crystal ZIFs growth in meso-Al2O3. To obtain a high crystal density ZIF-growth in meso-Al2O3 different parameters are tuned such as the surfactant (type and concentration), precursor concentration of ZIFs, and synthesis cycle of the composite material. The synthesis strategy is applicable for any ZIFs to be hybridized on supporting media such as meso-Al2O3. Furthermore, the application of ZIF-67@Al2O3 as a catalyst is examined and shows a high performance and recyclability for applications such as the Knoevenagel condensation and CO2 fixation reaction with epoxides. The highly active sites are distributed on a larger particle support (meso-Al2O3) is found to enhance the catalytic performance. Finally, the main advantage of the composite material is the straightforward handling compared to the use of bulk phases MOFs as a catalyst. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tMicroporous and Mesoporous Materials | ||
463 |
_tVol. 297 _v[110009, 7 p.] _d2020 |
||
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _acomposite material | |
610 | 1 | _ahierarchical | |
610 | 1 | _aMOFs | |
610 | 1 | _asurfactant assisted | |
610 | 1 | _acatalysis | |
610 | 1 | _aкомпозитные материалы | |
610 | 1 | _aповерхностно-активные вещества | |
610 | 1 | _aкатализ | |
610 | 1 | _aгетерогенные катализаторы | |
701 | 0 | _aXu Wei | |
701 | 0 | _aWang Jichao | |
701 | 0 | _aZhang Pan | |
701 | 0 | _aKlomkliang Nikom | |
701 | 0 |
_aChaemchuen Somboon _cchemist-technologist _cresearcher at Tomsk Polytechnic University, Ph.D _f1984- _2stltpush _3(RuTPU)RU\TPU\pers\42620 |
|
701 | 1 |
_aVerpoort _bF. V. K. _cChemical Engineer _cProfessor of Tomsk Polytechnic University, doctor of chemical Sciences _f1963- _gFrensis Valter Kornelius _2stltpush _3(RuTPU)RU\TPU\pers\35059 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20210906 _gRCR |
|
856 | 4 | 0 | _uhttps://doi.org/10.1016/j.micromeso.2020.110009 |
942 | _cCF |