000 03830nlm1a2200445 4500
001 665278
005 20231030041957.0
035 _a(RuTPU)RU\TPU\network\36477
035 _aRU\TPU\network\11811
090 _a665278
100 _a20210908a2020 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aVariable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies
_fA. A. Svetashkov, N. A. Kupriyanov, M. S. Pavlov, A. A. Vakurov
203 _aText
_celectronic
225 1 _aOriginal paper
300 _aTitle screen
320 _a[References: 36 tit.]
330 _aThe availability of accurate methods to mathematically model and predict the behavior of viscoelastic structures under mechanical, thermal and other loads remains a critical issue in different fields ranging from construction engineering to aerospace. Methods to calculate elastic structures are well developed; however, considering that viscoelastic properties require significant effort, we have developed and tested a new analytical method to solve boundary problems of isotropic linearly viscoelastic bodies. According to the proposed algorithm, to find the solution for a linear viscoelasticity boundary problem, we must replace the elastic constants with some functions of time and then numerically or analytically calculate the stress-strain state of the structure at any moment of its loading history. As a result of the theoretical justification of the proposed method, carried out in three independent ways, identical expressions of effective modules are obtained. The obtained results, as well as testing on solutions to several problems, allow us to conclude that the new analytical method is applicable to the calculation of the stress-strain state of viscoelastic bodies.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tActa Mechanica
463 _tVol. 231, iss. 9
_v[P. 3583-3606]
_d2020
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aразделение
610 1 _aкраевые задачи
610 1 _aвязкоупругие тела
610 1 _aматематическое моделирование
610 1 _aнапряженно-деформированные состояния
701 1 _aSvetashkov
_bA. A.
_cphysicist
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1943-
_gAleksandr Andreevich
_2stltpush
_3(RuTPU)RU\TPU\pers\36303
701 1 _aKupriyanov
_bN. A.
_cspecialist in the field of materials science
_cAssociate Professor of Tomsk Polytechnic University, candidate of technical sciences
_f1951-
_gNikolay Amvrosievich
_2stltpush
_3(RuTPU)RU\TPU\pers\36302
701 1 _aPavlov
_bM. S.
_cphysicist
_cassistant of Tomsk Polytechnic University
_f1984-
_gMikhail Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\37469
701 1 _aVakurov
_bA. A.
_gAndrey Aleksandrovich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bШкола базовой инженерной подготовки
_bОтделение общетехнических дисциплин
_h8035
_2stltpush
_3(RuTPU)RU\TPU\col\23550
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20210908
_gRCR
856 4 _uhttps://doi.org/10.1007/s00707-020-02698-4
942 _cCF