000 | 03830nlm1a2200445 4500 | ||
---|---|---|---|
001 | 665278 | ||
005 | 20231030041957.0 | ||
035 | _a(RuTPU)RU\TPU\network\36477 | ||
035 | _aRU\TPU\network\11811 | ||
090 | _a665278 | ||
100 | _a20210908a2020 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aVariable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies _fA. A. Svetashkov, N. A. Kupriyanov, M. S. Pavlov, A. A. Vakurov |
|
203 |
_aText _celectronic |
||
225 | 1 | _aOriginal paper | |
300 | _aTitle screen | ||
320 | _a[References: 36 tit.] | ||
330 | _aThe availability of accurate methods to mathematically model and predict the behavior of viscoelastic structures under mechanical, thermal and other loads remains a critical issue in different fields ranging from construction engineering to aerospace. Methods to calculate elastic structures are well developed; however, considering that viscoelastic properties require significant effort, we have developed and tested a new analytical method to solve boundary problems of isotropic linearly viscoelastic bodies. According to the proposed algorithm, to find the solution for a linear viscoelasticity boundary problem, we must replace the elastic constants with some functions of time and then numerically or analytically calculate the stress-strain state of the structure at any moment of its loading history. As a result of the theoretical justification of the proposed method, carried out in three independent ways, identical expressions of effective modules are obtained. The obtained results, as well as testing on solutions to several problems, allow us to conclude that the new analytical method is applicable to the calculation of the stress-strain state of viscoelastic bodies. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tActa Mechanica | ||
463 |
_tVol. 231, iss. 9 _v[P. 3583-3606] _d2020 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aразделение | |
610 | 1 | _aкраевые задачи | |
610 | 1 | _aвязкоупругие тела | |
610 | 1 | _aматематическое моделирование | |
610 | 1 | _aнапряженно-деформированные состояния | |
701 | 1 |
_aSvetashkov _bA. A. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1943- _gAleksandr Andreevich _2stltpush _3(RuTPU)RU\TPU\pers\36303 |
|
701 | 1 |
_aKupriyanov _bN. A. _cspecialist in the field of materials science _cAssociate Professor of Tomsk Polytechnic University, candidate of technical sciences _f1951- _gNikolay Amvrosievich _2stltpush _3(RuTPU)RU\TPU\pers\36302 |
|
701 | 1 |
_aPavlov _bM. S. _cphysicist _cassistant of Tomsk Polytechnic University _f1984- _gMikhail Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\37469 |
|
701 | 1 |
_aVakurov _bA. A. _gAndrey Aleksandrovich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bШкола базовой инженерной подготовки _bОтделение общетехнических дисциплин _h8035 _2stltpush _3(RuTPU)RU\TPU\col\23550 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа природных ресурсов _bОтделение нефтегазового дела _h8084 _2stltpush _3(RuTPU)RU\TPU\col\23546 |
801 | 2 |
_aRU _b63413507 _c20210908 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1007/s00707-020-02698-4 | |
942 | _cCF |