000 04028nlm1a2200565 4500
001 665305
005 20231030041958.0
035 _a(RuTPU)RU\TPU\network\36504
035 _aRU\TPU\network\25352
090 _a665305
100 _a20210910a2021 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aOxynet: A collective intelligence that detects ventilatory thresholds in cardiopulmonary exercise tests
_fA. Zignoli, A. Fornasiero, P. Rota [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References 43 tit.]
330 _aThe problem of the automatic determination of the first and second ventilatory thresholds (VT1 and VT2) from cardiopulmonary exercise test (CPET) still leads to controversy. The reliability of the gold standard methodology (i.e. expert visual inspection) feeds into the debate and several authors call for more objective automatic methods to be used in the clinical practice. In this study, we present a framework based on a collaborative approach, where a web-application was used to crowd-source a large number (1245) of CPET data of individuals with different aerobic fitness. The resulting database was used to train and test an artificial intelligence (i.e. a convolutional neural network) algorithm. This automatic classifier is currently implemented in another web-application and was used to detect the ventilatory thresholds in the available CPET. A total of 206 CPET were used to evaluate the accuracy of the estimations against the expert opinions. The neural network was able to detect the ventilatory thresholds with an average mean absolute error of 178 (198) mlO2/min (11.1%, r=0.97) and 144 (149) mlO2/min (6.1%, r=0.99), for VT1 and VT2 respectively. The performance of the neural network in detecting VT1 deteriorated in case of individuals with poor aerobic fitness. Our results suggest the potential for a collective intelligence system to outperform isolated experts in ventilatory thresholds detection. However, the inclusion of a larger number of VT1 examples certified by a community of experts will be likely needed before the abilities of this collective intelligence can be translated into the clinical use of CPET.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tEuropean Journal of Sport Science
463 _tVol. XX, iss. X
_v[11 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aautomatic methods
610 1 _aartificial intelligence
610 1 _adeep learning
610 1 _aавтоматические методы
610 1 _aискусственный интеллект
610 1 _aмашинное обучение
610 1 _aглубокое обучение
610 1 _aдыхание
610 1 _aнагрузки
701 1 _aZignoli
_bA.
_gAndrea
701 1 _aFornasiero
_bA.
_gAlessandro
701 1 _aRota
_bP.
701 1 _aMuollo
_bV.
_gValentina
701 1 _aPeyre-Tartaruga
_bL. A.
701 1 _aLow
_bD. A.
_gDavid
701 1 _aFontana
_bF. Y.
_gFederico
701 1 _aBesson
_bD.
701 1 _aPuhringer
_bM.
_gMartin
701 1 _aRing-Dimitriou
_bS.
_gSusanne
701 1 _aMourot
_bL.
_cspecialist in the field of physical training and sports
_cSenior Researcher of Tomsk Polytechnic University, Candidate of philological sciences
_f1977-
_gLaurent
_2stltpush
_3(RuTPU)RU\TPU\pers\41001
712 0 2 _aНациональный исследовательский Томский политехнический университет (ТПУ)
_bШкола базовой инженерной подготовки (ШБИП)
_bОтделение физической культуры (ОФК)
_h8034
_2stltpush
_3(RuTPU)RU\TPU\col\23545
801 2 _aRU
_b63413507
_c20220624
_gRCR
856 4 _uhttps://doi.org/10.1080/17461391.2020.1866081
942 _cCF