000 04164nlm1a2200517 4500
001 665379
005 20231030042001.0
035 _a(RuTPU)RU\TPU\network\36578
035 _aRU\TPU\network\33974
090 _a665379
100 _a20210921a2021 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aHybrid machine learning algorithms to predict condensate viscosity in the near wellbore regions of gas condensate reservoirs
_fBehesht Abad Abouzar Rajabi, M. Mousavi Seyedmohammadvahid, N. Mohamadian [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aGas condensate reservoirs display unique phase behavior and are highly sensitive to reservoir pressure changes. This makes it difficult to determine their PVT characteristics, including their condensate viscosity, which is a key variable in determining their flow behavior. In this study, a novel machine learning approach is developed to predict condensate viscosity in the near wellbore regions ([mu]c) from five input variables: pressure (P), temperature (T), initial gas to condensate ratio (RS), gas specific gravity ([gamma]g), and condensate gravity (API). Due to the absence of accurate recombination methods for determining [mu]c machine learning methods offer a useful alternative approach. Nine machine learning and hybrid machine learning algorithms are evaluated including novel mul-tiple extreme learning machine (MELM), least squares support vector machine (LSSVM) and multi-layer per-ceptron (MLP) and each hybridized with a particle swarm optimizer (PSO) and genetic algorithm (GA). The new MELM algorithm has some advantages including 1) rapid execution, 2) high accuracy, 3) simple training, 4) avoidance of overfitting, 5) non-linear conversion during training, 6) no trapping at local optima, 6) fewer optimization steps than SVM and LSSVM. Combining MELM with PSO, to find the best control parameters, further improves its performance. Analysis indicates that the MELM-PSO model provides the highest μc predic-tion accuracy achieving a root mean squared error (RMSE) of 0.0035 cP and a coefficient of determination (R2) of 0.9931 for a dataset of 2269 data records compiled from gas-condensate fields around the world. The MELM-PSO algorithm generates no outlying data predictions. Spearman correlation coefficient analysis identifies that P, [gamma]g and Rs are the most influential variables in terms of condensate viscosity based on the large dataset studied.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tJournal of Natural Gas Science and Engineering
463 _tVol. 95
_v[104210, 26 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ahybrid machine learning algorithms
610 1 _agas condensate viscosity
610 1 _amulti-layer extreme learning machine
610 1 _amultilayer perceptron
610 1 _aleast squares support vector machine
610 1 _aалгоритмы
610 1 _aмашинное обучение
610 1 _aвязкость
610 1 _aгазовые конденсаты
701 0 _aBehesht Abad Abouzar Rajabi
701 1 _aMousavi Seyedmohammadvahid
_bM.
701 1 _aMohamadian
_bN.
_gNima
701 1 _aWood
_bD. А.
_gDavid
701 1 _aGhorbani
_gHamzeh
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
701 1 _aAhmadi
_bA. M.
_gAlvar Mehdi
701 1 _aShahbazi
_bKh.
_gKhalil
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20210921
_gRCR
856 4 _uhttps://doi.org/10.1016/j.jngse.2021.104210
942 _cCF