000 03661nlm1a2200397 4500
001 665478
005 20231030042004.0
035 _a(RuTPU)RU\TPU\network\36677
035 _aRU\TPU\network\36578
090 _a665478
100 _a20211008a2021 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aRobust hybrid machine learning algorithms for gas flow rates prediction through wellhead chokes in gas condensate fields
_fBehesht Abad Abouzar Rajabi, Ghorbani, N. Mohamadian [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aCondensate reservoirs are the most challenging hydrocarbon reservoirs in the world. The behavior of condensate gas reservoirs regarding pressure and temperature variation is unique. Adjusting fluid flow rate through wellhead chokes of condensate gas wells is critical and challenging for reservoir management. Predicting this vital parameter is a big step for the development of condensate gas fields. In this study, a novel machine learning approach is developed to predict gas flow rate (Qg) from six input variables: temperature (T); upstream pressure (Pu); downstream pressure (Pd); gas gravity (?g); choke diameter (D64) and gas–liquid ratio (GLR). Due to the absence of accurate recombination methods for determining Qg, machine learning methods offer a functional alternative approach. Four hybrid machine learning (HML) algorithms are developed by integrating multiple extreme learning machine (MELM) and least squares support vector machine (LSSVM) with two optimization algorithms, the genetic algorithm (GA) and the particle swarm optimizer (PSO). The evaluation conducted on prediction performance and accuracy of the four HML models developed indicates that the MELM-PSO model has the highest Qg prediction accuracy achieving a root mean squared error (RMSE) of 2.8639 Mscf/d and a coefficient of determination (R2) of 0.9778 for a dataset of 1009 data records compiled from gas-condensate fields around Iran. Comparison of the prediction performance of the HML models developed with those of the previous empirical equations and artificial intelligence models reveals that the novel MELM-PSO model presents superior prediction efficiency and higher computational accuracy. Moreover, the Spearman correlation coefficient analysis performed demonstrates that D64 and GLR are the most influential variables in the gas flow rate for the large dataset evaluated in this study.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tFuel
463 _tVol. 308
_v[121872, 10 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 0 _aBehesht Abad Abouzar Rajabi
701 1 _aGhorbani
_gHamzeh
701 1 _aMohamadian
_bN.
_gNima
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
701 1 _aMehrad
_bM.
_gMohammad
701 1 _aAghdam
_bS. Kh.
_gSaeed Khezerloo Ye
701 1 _aNasriani
_bH. R.
_gHamid Reza
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20211008
_gRCR
856 4 _uhttps://doi.org/10.1016/j.fuel.2021.121872
942 _cCF