000 | 04272nlm1a2200493 4500 | ||
---|---|---|---|
001 | 665513 | ||
005 | 20231030042005.0 | ||
035 | _a(RuTPU)RU\TPU\network\36712 | ||
035 | _aRU\TPU\network\35557 | ||
090 | _a665513 | ||
100 | _a20211012a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aFirst observation of quasi–monochromatic optical Cherenkov radiation in a dispersive medium (quartz) _fA. P. Potylitsyn, G. Kube, A. I. Novokshonovх [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 40 tit.] | ||
330 | _aThe present article summarizes the results of a study of optical Cherenkov radiation (ChR) spectral properties both theoretically and experimentally. This type of radiation has a continuous spectral distribution which allows to use it in different fields of physics as for charged particle identification or generation of intense THz radiation. By exploiting the frequency dependency of the target permittivity it is possible to observe quasi–monochromatic radiation. A theoretical model based on a surface current approach is presented which allows to predict angular and spectral properties of ChR. In order to test the model predictions, an experiment was carried out using 855 MeV electrons and a 0.2 mm thick quartz target as radiator which could be rotated with respect to the beam axis. Quasi–monochromatic ChR was observed with a spectrometer placed at a fix observation angle, and tilting the radiator crystal offered the possibility to tune the radiation wavelength. The monochromatization effect is attributed to the frequency dependency of the quartz permittivity, and taking into account the refraction law for emitted ChR crossing the boundary between radiator target and vacuum it is possible to deduce a dispersion relation which connects ChR wavelength and outgoing photon angle - or in an alternative way ChR wavelength and target tilt angle for fixed observation angle. The dispersion relation is clearly confirmed in the experiment, and the model predictions show a satisfactory agreement with the measurements. Exploiting the ChR monochromatization mechanism might offer versatile tools which can find applications for example in beam diagnostics at modern particle accelerators. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tPhysics Letters A | ||
463 |
_tVol. 417 _v[127680, 8 р.] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aCherenkov radiation | |
610 | 1 | _abeam diagnostics | |
610 | 1 | _aparticle accelerators | |
610 | 1 | _aчеренковское излучение | |
610 | 1 | _aлучевая диагностика | |
610 | 1 | _aускорители | |
701 | 1 |
_aPotylitsyn _bA. P. _cRussian physicist _cProfessor of the TPU _f1945- _gAlexander Petrovich _2stltpush _3(RuTPU)RU\TPU\pers\26306 |
|
701 | 1 |
_aKube _bG. _gGero |
|
701 | 1 |
_aNovokshonov _bA. I. _cspecialist in the field of non-destructive testing _cengineer of Tomsk Polytechnic University _f1990- _gArtem Igorevich _2stltpush _3(RuTPU)RU\TPU\pers\35523 |
|
701 | 1 |
_aVukolov _bA. V. _cphysicist _cResearch associate of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1978- _gArtem Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\31209 |
|
701 | 1 |
_aGogolev _bS. Yu. _cphysicist _cassistant at Tomsk Polytechnic University _f1986- _gSergey Yurevich _2stltpush _3(RuTPU)RU\TPU\pers\31517 |
|
701 | 1 |
_aAlekseev _bB. A. _cPhysicist _cEngineer of Tomsk Polytechnic University _f1991- _gBoris Alexandrovich _2stltpush _3(RuTPU)RU\TPU\pers\44418 |
|
701 | 1 |
_aKlag _bP. _gPascal |
|
701 | 1 |
_aLauth _bW. _gWerner |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20211012 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.physleta.2021.127680 | |
942 | _cCF |