000 04272nlm1a2200493 4500
001 665513
005 20231030042005.0
035 _a(RuTPU)RU\TPU\network\36712
035 _aRU\TPU\network\35557
090 _a665513
100 _a20211012a2021 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aFirst observation of quasi–monochromatic optical Cherenkov radiation in a dispersive medium (quartz)
_fA. P. Potylitsyn, G. Kube, A. I. Novokshonovх [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 40 tit.]
330 _aThe present article summarizes the results of a study of optical Cherenkov radiation (ChR) spectral properties both theoretically and experimentally. This type of radiation has a continuous spectral distribution which allows to use it in different fields of physics as for charged particle identification or generation of intense THz radiation. By exploiting the frequency dependency of the target permittivity it is possible to observe quasi–monochromatic radiation. A theoretical model based on a surface current approach is presented which allows to predict angular and spectral properties of ChR. In order to test the model predictions, an experiment was carried out using 855 MeV electrons and a 0.2 mm thick quartz target as radiator which could be rotated with respect to the beam axis. Quasi–monochromatic ChR was observed with a spectrometer placed at a fix observation angle, and tilting the radiator crystal offered the possibility to tune the radiation wavelength. The monochromatization effect is attributed to the frequency dependency of the quartz permittivity, and taking into account the refraction law for emitted ChR crossing the boundary between radiator target and vacuum it is possible to deduce a dispersion relation which connects ChR wavelength and outgoing photon angle - or in an alternative way ChR wavelength and target tilt angle for fixed observation angle. The dispersion relation is clearly confirmed in the experiment, and the model predictions show a satisfactory agreement with the measurements. Exploiting the ChR monochromatization mechanism might offer versatile tools which can find applications for example in beam diagnostics at modern particle accelerators.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tPhysics Letters A
463 _tVol. 417
_v[127680, 8 р.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aCherenkov radiation
610 1 _abeam diagnostics
610 1 _aparticle accelerators
610 1 _aчеренковское излучение
610 1 _aлучевая диагностика
610 1 _aускорители
701 1 _aPotylitsyn
_bA. P.
_cRussian physicist
_cProfessor of the TPU
_f1945-
_gAlexander Petrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\26306
701 1 _aKube
_bG.
_gGero
701 1 _aNovokshonov
_bA. I.
_cspecialist in the field of non-destructive testing
_cengineer of Tomsk Polytechnic University
_f1990-
_gArtem Igorevich
_2stltpush
_3(RuTPU)RU\TPU\pers\35523
701 1 _aVukolov
_bA. V.
_cphysicist
_cResearch associate of Tomsk Polytechnic University, Candidate of physical and mathematical sciences
_f1978-
_gArtem Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31209
701 1 _aGogolev
_bS. Yu.
_cphysicist
_cassistant at Tomsk Polytechnic University
_f1986-
_gSergey Yurevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31517
701 1 _aAlekseev
_bB. A.
_cPhysicist
_cEngineer of Tomsk Polytechnic University
_f1991-
_gBoris Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\44418
701 1 _aKlag
_bP.
_gPascal
701 1 _aLauth
_bW.
_gWerner
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20211012
_gRCR
856 4 _uhttps://doi.org/10.1016/j.physleta.2021.127680
942 _cCF