000 | 03915nlm1a2200493 4500 | ||
---|---|---|---|
001 | 665588 | ||
005 | 20231030042008.0 | ||
035 | _a(RuTPU)RU\TPU\network\36787 | ||
035 | _aRU\TPU\network\36317 | ||
090 | _a665588 | ||
100 | _a20211021a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aProspects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage _fV. N. Kudiyarov, Lyu Jinzhe, O. V. Semyonov [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 242 tit.] | ||
330 | _aAs a clean and ideal secondary energy source, hydrogen energy has attracted widespread attention from all countries in the world. Hydrogen storage technology is a crucial technology for the commercial application of hydrogen energy. However, none of the candidate materials developed so far has satisfied the United States Department of Energy (DOE) target yet. Compared with the single catalytic effect, the synergistic effect in composite materials is considered a more effective way to achieve the best hydrogen storage properties by controlling the hydrogen storage properties of both the matrix and the filler. In this article, based on the understanding of new aspects of synergistic behavior between metal-organic frameworks (MOFs) support and doped hydride-forming metal nanoparticles, we revealed the prospects of hybrid materials composed of MOFs and hydride-forming metal nanoparticles for light-duty vehicle hydrogen storage. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tApplied Materials Today | ||
463 |
_tVol. 25 _v[101208, 19 р.] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aMOFs | |
610 | 1 | _ahydride-forming metal nanoparticles | |
610 | 1 | _aphysisorption | |
610 | 1 | _achemisorption | |
610 | 1 | _asynergistic effect | |
610 | 1 | _aметаллические наночастицы | |
610 | 1 | _aсинергетические эффекты | |
701 | 1 |
_aKudiyarov _bV. N. _cphysicist _cEngineer of Tomsk Polytechnic University _f1990- _gVictor Nikolaevich _2stltpush _3(RuTPU)RU\TPU\pers\30836 |
|
701 | 0 |
_aLyu Jinzhe _cphysicist _cengineer of Tomsk Polytechnic University _f1993- _2stltpush _3(RuTPU)RU\TPU\pers\45439 |
|
701 | 1 |
_aSemyonov _bO. V. _cprocess chemist _cJunior Researcher, Tomsk Polytechnic University _f1993- _gOleg Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\45298 |
|
701 | 1 |
_aLider _bA. M. _cPhysicist _cProfessor of Tomsk Polytechnic University, Doctor of Technical Sciences _f1976- _gAndrey Markovich _2stltpush _3(RuTPU)RU\TPU\pers\30400 |
|
701 | 0 |
_aChaemchuen Somboon _cchemist-technologist _cresearcher at Tomsk Polytechnic University, Ph.D _f1984- _2stltpush _3(RuTPU)RU\TPU\pers\42620 |
|
701 | 1 |
_aVerpoort _bF. V. K. _cChemical Engineer _cProfessor of Tomsk Polytechnic University, doctor of chemical Sciences _f1963- _gFrensis Valter Kornelius _2stltpush _3(RuTPU)RU\TPU\pers\35059 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа ядерных технологий _bОтделение экспериментальной физики _h7865 _2stltpush _3(RuTPU)RU\TPU\col\23549 |
801 | 2 |
_aRU _b63413507 _c20211021 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.apmt.2021.101208 | |
942 | _cCF |