000 03378nlm1a2200481 4500
001 665667
005 20231030042011.0
035 _a(RuTPU)RU\TPU\network\36870
035 _aRU\TPU\network\34931
090 _a665667
100 _a20211028a2021 k y0engy50 ba
101 0 _aeng
102 _aDE
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aNovel hybrid machine learning optimizer algorithms to prediction of fracture density by petrophysical data
_fM. Rajabi, S. Beheshtian, Sh. Davoodi [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aOne of the challenges in reservoir management is determining the fracture density (FVDC) in reservoir rock. Given the high cost of coring operations and image logs, the ability to predict FVDC from various petrophysical input variables using a supervised learning basis calibrated to the standard well is extremely useful. In this study, a novel machine learning approach is developed to predict FVDC from 12-input variable well-log based on feature selection. To predict the FVDC, combination of two networks of multiple extreme learning machines (MELM) and multi-layer perceptron (MLP) hybrid algorithm with a combination of genetic algorithm (GA) and particle swarm optimizer (PSO) has been used. We use a novel MELM-PSO/GA combination that has never been used before, and the best comparison result between MELM-PSO-related models with performance test data is RMSE = 0.0047 1/m; R2 = 0.9931. According to the performance accuracy analysis, the models are MLP-PSO < MLP-GA < MELM-GA < MELM-PSO. This method can be used in other fields, but it must be recalibrated with at least one well. Furthermore, the developed method provides insights for the use of machine learning to reduce errors and avoid data overfitting in order to create the best possible prediction performance for FVDC prediction.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tJournal of Petroleum Exploration and Production
463 _tVol. 11, iss. 12
_v[P. 4375-4397]
_d2021
610 1 _aтруды учёных ТПУ
610 1 _aэлектронный ресурс
610 1 _afracture density
610 1 _amulti-hidden layer extreme learning machine
610 1 _ahybrid machine learning algorithms
610 1 _amulti-layer perceptron
610 1 _aплотность
610 1 _aтрещины
610 1 _aгибридное обучение
701 1 _aRajabi
_bM.
_gMeysam
701 1 _aBeheshtian
_bS.
_gSaeed
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
701 1 _aGhorbani
_bH.
_gHamzeh
701 1 _aMohamadian
_bN.
_gNima
701 1 _aRadwan
_bA. E.
_gAhmed
701 1 _aAhmadi
_bA. M.
_gAlvar Mehdi
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20211028
_gPSBO
856 4 _uhttps://doi.org/10.1007/s13202-021-01321-z
942 _cCF