000 | 03417nlm1a2200493 4500 | ||
---|---|---|---|
001 | 665700 | ||
005 | 20231030042012.0 | ||
035 | _a(RuTPU)RU\TPU\network\36904 | ||
035 | _aRU\TPU\network\36901 | ||
090 | _a665700 | ||
100 | _a20211109a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aCH | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCharacterizing Depth of Defects with Low Size/Depth Aspect Ratio and Low Thermal Reflection by Using Pulsed IR Thermography _fA. I. Moskovchenko, M. Svantner, V. P. Vavilov, A. O. Chulkov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 35 tit.] | ||
330 | _aThis study is focused on the quantitative estimation of defect depth by applying pulsed thermal nondestructive testing. The majority of known defect characterization techniques are based on 1D heat conduction solutions, thus being inappropriate for evaluating defects with low aspect ratios. A novel method for estimating defect depth is proposed by taking into account the phenomenon of 3D heat diffusion, finite lateral size of defects and the thermal reflection coefficient at the boundary between a host material and defects. The method is based on the combination of a known analytical model and a non-linear fitting (NLF) procedure. The algorithm was verified both numerically and experimentally on 3D-printed polylactic acid plastic samples. The accuracy of depth prediction using the proposed method was compared with the reference characterization technique based on thermographic signal reconstruction to demonstrate the efficiency of the proposed NLF method. | ||
461 | _tMaterials | ||
463 |
_tVol. 14, iss. 8 _v[1886, 20 p.] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _apulse thermography | |
610 | 1 | _adefect aspect ratio | |
610 | 1 | _athermal reflection coefficient | |
610 | 1 | _athermal NDT | |
610 | 1 | _adefect characterization | |
610 | 1 | _anon-linear fitting | |
610 | 1 | _athermographic signal reconstruction | |
610 | 1 | _aтермография | |
610 | 1 | _aнеразрушающий контроль | |
610 | 1 | _aдефекты | |
701 | 1 |
_aMoskovchenko _bA. I. _gAleksey Igorevich |
|
701 | 1 |
_aSvantner _bM. _gMichal |
|
701 | 1 |
_aVavilov _bV. P. _cSpecialist in the field of dosimetry and methodology of nondestructive testing (NDT) _cDoctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU) _f1949- _gVladimir Platonovich _2stltpush _3(RuTPU)RU\TPU\pers\32161 |
|
701 | 1 |
_aChulkov _bA. O. _cspecialist in the field of non-destructive testing _cEngineer of Tomsk Polytechnic University _f1989- _gArseniy Olegovich _2stltpush _3(RuTPU)RU\TPU\pers\32220 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа неразрушающего контроля и безопасности _bЦентр промышленной томографии _bМеждународная научно-образовательная лаборатория неразрушающего контроля _h6776 _2stltpush _3(RuTPU)RU\TPU\col\19961 |
801 | 2 |
_aRU _b63413507 _c20211126 _gRCR |
|
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/68961 | |
856 | 4 | _uhttps://doi.org/10.3390/ma14081886 | |
942 | _cCF |