000 03403nlm1a2200529 4500
001 666030
005 20231030042023.0
035 _a(RuTPU)RU\TPU\network\37234
035 _aRU\TPU\network\37231
090 _a666030
100 _a20211130a2021 k y0engy50 ba
101 0 _aeng
135 _adrgn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aBoosting Atomic Orbit Search Using Dynamic-Based Learning for Feature Selection
_fMohamed Abd Elaziz, A. Laith, Yo. Dalia [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 57 tit.]
330 _aFeature selection (FS) is a well-known preprocess step in soft computing and machine learning algorithms. It plays a critical role in different real-world applications since it aims to determine the relevant features and remove other ones. This process (i.e., FS) reduces the time and space complexity of the learning technique used to handle the collected data. The feature selection methods based on metaheuristic (MH) techniques established their performance over all the conventional FS methods. So, in this paper, we presented a modified version of new MH techniques named Atomic Orbital Search (AOS) as FS technique. This is performed using the advances of dynamic opposite-based learning (DOL) strategy that is used to enhance the ability of AOS to explore the search domain. This is performed by increasing the diversity of the solutions during the searching process and updating the search domain. A set of eighteen datasets has been used to evaluate the efficiency of the developed FS approach, named AOSD, and the results of AOSD are compared with other MH methods. From the results, AOSD can reduce the number of features by preserving or increasing the classification accuracy better than other MH techniques.
461 _tMathematics
463 _tVol. 9, iss. 21
_v[2786, 17 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asoft computing
610 1 _amachine learning
610 1 _afeature selection (FS)
610 1 _ametaheuristic (MH)
610 1 _aatomic orbital search (AOS)
610 1 _adynamic opposite-based learning (DOL)
610 1 _aвычисления
610 1 _aмашинное обучение
610 1 _aметаэвристика
610 1 _aатомно-орбитальные модели
701 0 _aMohamed Abd Elaziz
701 1 _aLaith
_bA.
_gAbualigah
701 1 _aDalia
_bYo.
_gYousri
701 1 _aOliva Navarro
_bD. A.
_cspecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDiego Alberto
_2stltpush
_3(RuTPU)RU\TPU\pers\37366
701 0 _aMohammed A. A. Al-Qaness
701 0 _aMohammad H. Nadimi-Shahraki
701 1 _aEwees
_bA. A.
_gAhmed
701 1 _aSongfeng
_bL.
_gLu
701 1 _aRehab
_bA. I.
_gAli Ibrahim
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20211130
_gRCR
856 4 _uhttps://doi.org/10.3390/math9212786
942 _cCF