000 03699nlm1a2200541 4500
001 666307
005 20231030042032.0
035 _a(RuTPU)RU\TPU\network\37511
035 _aRU\TPU\network\36796
090 _a666307
100 _a20211215a2021 k y0engy50 ba
101 0 _aeng
102 _aCH
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aTreatment with Argovit® Silver Nanoparticles Induces Differentiated Postharvest Biosynthesis of Compounds with Pharmaceutical Interest in Carrot (Daucus carota L.)
_fL. S. Santoscoy-Berber, M. Antunes-Ricardo, M. Z. Gallegos-Granados [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 36 tit.]
330 _aThe global market for plant-derived bioactive compounds is growing significantly. The use of plant secondary metabolites has been reported to be used for the prevention of chronic diseases. Silver nanoparticles were used to analyze the content of enhancement phenolic compounds in carrots. Carrot samples were immersed in different concentrations (0, 5, 10, 20, or 40 mg/L) of each of five types of silver nanoparticles (AgNPs) for 3 min. Spectrophotometric methods measured the total phenolic compounds and the antioxidant capacity. The individual phenolic compounds were quantified by High Performance Liquid Chromatography (HPLC) and identified by -mass spectrometry (HPLC-MS). The five types of AgNPs could significantly increase the antioxidant capacity of carrots' tissue in a dose-dependent manner. An amount of 20 mg/L of type 2 and 5 silver nanoparticle formulations increased the antioxidant capacity 3.3-fold and 4.1-fold, respectively. The phenolic compounds that significantly increased their content after the AgNP treatment were chlorogenic acid, 3-O-caffeoylquinic acid, and 5′-caffeoylquinic acid. The increment of each compound depended on the dose and the type of the used AgNPs. The exogenous application of Argovit® AgNPs works like controlled abiotic stress and produces high-value secondary bioactive compounds in carrot.
461 _tNanomaterials
463 _tVol. 11, iss. 11
_v[3148, 13 p.}
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asilver nanoparticles
610 1 _apostharvest abiotic stress
610 1 _aphenolic compounds
610 1 _aDaucus carota
610 1 _aнаночастицы
610 1 _aсеребро
610 1 _aфенольные соединения
610 1 _aбиосинтез
610 1 _aбиоактивные соединения
610 1 _aпрофилактика заболеваний
610 1 _aрастительное происхождение
701 1 _aSantoscoy-Berber
_bL. S.
_gLaura Sofia
701 1 _aAntunes-Ricardo
_bM.
_gMarilena
701 1 _aGallegos-Granados
_bM. Z.
_gMelissa Zulahi
701 1 _aGarcia-Ramos
_bJu. C.
_gJuan Carlos
701 1 _aPestryakov
_bA. N.
_cChemist
_cProfessor of Tomsk Polytechnic University, Doctor of Chemical Science
_f1963-
_gAleksey Nikolaevich
_2stltpush
_3(RuTPU)RU\TPU\pers\30471
701 1 _aToledano-Magana
_bYa.
_gYanis
701 1 _aBogdanchikova
_bN.
_gNina
701 1 _aChavez-Santoscoy
_bR. A.
_gRocio Alejandra
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20211215
_gRCR
856 4 _uhttps://doi.org/10.3390/nano11113148
942 _cCF