000 | 03699nlm1a2200541 4500 | ||
---|---|---|---|
001 | 666307 | ||
005 | 20231030042032.0 | ||
035 | _a(RuTPU)RU\TPU\network\37511 | ||
035 | _aRU\TPU\network\36796 | ||
090 | _a666307 | ||
100 | _a20211215a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aCH | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aTreatment with Argovit® Silver Nanoparticles Induces Differentiated Postharvest Biosynthesis of Compounds with Pharmaceutical Interest in Carrot (Daucus carota L.) _fL. S. Santoscoy-Berber, M. Antunes-Ricardo, M. Z. Gallegos-Granados [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 36 tit.] | ||
330 | _aThe global market for plant-derived bioactive compounds is growing significantly. The use of plant secondary metabolites has been reported to be used for the prevention of chronic diseases. Silver nanoparticles were used to analyze the content of enhancement phenolic compounds in carrots. Carrot samples were immersed in different concentrations (0, 5, 10, 20, or 40 mg/L) of each of five types of silver nanoparticles (AgNPs) for 3 min. Spectrophotometric methods measured the total phenolic compounds and the antioxidant capacity. The individual phenolic compounds were quantified by High Performance Liquid Chromatography (HPLC) and identified by -mass spectrometry (HPLC-MS). The five types of AgNPs could significantly increase the antioxidant capacity of carrots' tissue in a dose-dependent manner. An amount of 20 mg/L of type 2 and 5 silver nanoparticle formulations increased the antioxidant capacity 3.3-fold and 4.1-fold, respectively. The phenolic compounds that significantly increased their content after the AgNP treatment were chlorogenic acid, 3-O-caffeoylquinic acid, and 5′-caffeoylquinic acid. The increment of each compound depended on the dose and the type of the used AgNPs. The exogenous application of Argovit® AgNPs works like controlled abiotic stress and produces high-value secondary bioactive compounds in carrot. | ||
461 | _tNanomaterials | ||
463 |
_tVol. 11, iss. 11 _v[3148, 13 p.} _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _asilver nanoparticles | |
610 | 1 | _apostharvest abiotic stress | |
610 | 1 | _aphenolic compounds | |
610 | 1 | _aDaucus carota | |
610 | 1 | _aнаночастицы | |
610 | 1 | _aсеребро | |
610 | 1 | _aфенольные соединения | |
610 | 1 | _aбиосинтез | |
610 | 1 | _aбиоактивные соединения | |
610 | 1 | _aпрофилактика заболеваний | |
610 | 1 | _aрастительное происхождение | |
701 | 1 |
_aSantoscoy-Berber _bL. S. _gLaura Sofia |
|
701 | 1 |
_aAntunes-Ricardo _bM. _gMarilena |
|
701 | 1 |
_aGallegos-Granados _bM. Z. _gMelissa Zulahi |
|
701 | 1 |
_aGarcia-Ramos _bJu. C. _gJuan Carlos |
|
701 | 1 |
_aPestryakov _bA. N. _cChemist _cProfessor of Tomsk Polytechnic University, Doctor of Chemical Science _f1963- _gAleksey Nikolaevich _2stltpush _3(RuTPU)RU\TPU\pers\30471 |
|
701 | 1 |
_aToledano-Magana _bYa. _gYanis |
|
701 | 1 |
_aBogdanchikova _bN. _gNina |
|
701 | 1 |
_aChavez-Santoscoy _bR. A. _gRocio Alejandra |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20211215 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.3390/nano11113148 | |
942 | _cCF |