000 03424nlm1a2200445 4500
001 666504
005 20231030042039.0
035 _a(RuTPU)RU\TPU\network\37708
035 _aRU\TPU\network\35020
090 _a666504
100 _a20211228a2021 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aNature and Biologically Inspired Image Segmentation Techniques
_fS. Singh, N. Mittal, D. Thakur [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 144 tit.]
330 _aImage processing is among the signifcant areas of growth in the current scenario. It consist of a set of techniques typically used to enhance the raw image obtained from diferent scenes. Segmentation of images is an essential step in image analysis and pre-processing. During the course of the work, standard multilevel thresholding methods are very efective due to their low computational cost, reliability, reduced convergence time, and precision. Nature-inspired methods of optimization play an essential role in the processing of images. Several optimization procedures have been proposed for diferent image processing applications. These optimization techniques can improve the performance of image segmentation, image restoration, edge detection, image enhancement, pattern recognition, image generation, image thresholding, and image fusion algorithms. This paper includes an overview of several metaheuristic frefy algorithm (FA), diferential evolution (DE), particle swarm optimization (PSO), genetic algorithm (GA), artifcial bee colony optimization (ABC), etc. Moreover, artifcial neural networks (ANN) and other machine learning techniques (nature or biological inspired) are discussed in context with image segmentation application and their algorithms.
461 _tArchives of Computational Methods in Engineering
463 _tVol. XX, iss. X
_v[28 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aбиологические методы
610 1 _aсегментация
610 1 _aизображения
610 1 _aобработка изображений
610 1 _aискусственные нейронные сети
610 1 _aмашинное обучение
701 1 _aSingh
_bS.
_gSimrandeep
701 1 _aMittal
_bN.
_gNitin
701 1 _aThakur
_bD.
_gDiksha
701 1 _aSingh
_bH.
_gHarbinder
701 1 _aOliva Navarro
_bD. A.
_cspecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDiego Alberto
_2stltpush
_3(RuTPU)RU\TPU\pers\37366
701 1 _aDemin
_bA. Yu.
_cspecialist in the field of Informatics and computer engineering
_cAssociate Professor of Tomsk Polytechnic University, candidate of technical sciences
_f1973-
_gAnton Yurievich
_2stltpush
_3(RuTPU)RU\TPU\pers\33696
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20211228
_gRCR
856 4 _uhttps://doi.org/10.1007/s11831-021-09619-1
942 _cCF