000 04216nlm1a2200493 4500
001 666513
005 20231030042039.0
035 _a(RuTPU)RU\TPU\network\37717
035 _aRU\TPU\network\35189
090 _a666513
100 _a20211228a2021 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMesoscopic Theoretical Modeling and Experimental Study of Rheological Behavior of Water-Based Drilling Fluid Containing Associative Synthetic Polymer, Bentonite, and Limestone
_fA. K. Moghaddam, Sh. Davoodi, Ah. S. A. Ramazani, K. M. Minaev
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 51 tit.]
330 _aEmploying an effective rheological model for the flow of drilling fluid that can accurately predict changing conditions is of significant importance in drilling fluid optimization. Traditional generalized Newtonian models cannot predict the time change condition, viscoelastic behavior, role of each component, or microstructural behaviors within the fluid. Consequently, the present research aims to develop constitutive equations in the framework of generalized bracket formalisms and the extra tensor concept that connect the microscopic and macroscopic properties and can overcome the aforementioned problems of traditional rheological models. The developed model is applicable for drilling fluid as a suspension system containing associative synthetic polymer, bentonite, and limestone suspended in water; where simple structures of flexible dumbbells, disks, and hard spheres, respectively, are representative of each component in the system.
330 _aFive samples of drilling fluid with different additive concentrations were prepared and rheological testing was performed on these samples. To obtain the fixed parameters of the model, scanning electron microscope and particle size analyses were conducted on the dried powder and dispersed particles of bentonite and limestone to characterize the shape and size of the particles. The adjustable parameters of the model were then obtained by fitting it using the gathered experimental rheological data. The outcomes of the study revealed that the novel developed model can accurately predict rheological material functions, including shear viscosity and the first normal stress coefficient under transient and steady-state conditions. Furthermore, the presented model is capable of distinguishing the contribution of each component in the drilling fluid rheology.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tJournal of Molecular Liquids
463 _tVol. XXX
_v[117950, 41 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _amesoscopic model
610 1 _amathematical rheology model
610 1 _amicro-structures
610 1 _asuspension system
610 1 _ageneralized bracket formalisms
610 1 _aHamiltonian mechanics
610 1 _aматематические модели
610 1 _aмикроструктуры
610 1 _aподвесные системы
610 1 _aГамильтонова механика
701 1 _aMoghaddam
_bA. K.
_gAli Kariman
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
701 1 _aRamazani
_bAh. S. A.
_gAhmad
701 1 _aMinaev
_bK. M.
_cspecialist in the field of oil and gas business
_cassociate Professor of Tomsk Polytechnic University, candidate of chemical Sciences
_f1982-
_gKonstantin Madestovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32815
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20211228
_gRCR
856 4 _uhttps://doi.org/10.1016/j.molliq.2021.117950
942 _cCF