000 | 03517nlm0a2200469 4500 | ||
---|---|---|---|
001 | 666674 | ||
005 | 20231030042044.0 | ||
035 | _a(RuTPU)RU\TPU\network\37878 | ||
035 | _aRU\TPU\network\37855 | ||
090 | _a666674 | ||
100 | _a20220119d2017 k y0engy50 ba | ||
101 | 0 | _aeng | |
105 | _ay z 100zy | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aA Multiple Region Reverse Frequency Allocation Scheme for Downlink Capacity Enhancement in 5G HetNets _fA. A. Ijaz, S. A. Hassan, D. N. K. Dzhayakodi (Jayakody) Arachshiladzh |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 13 tit.] | ||
330 | _aTo cope with the data surge problem and to enhance the coverage of existing cellular systems, heterogeneous networks (HetNets) are deployed in hierarchical manner, comprising of macrocells and overlaid femtocells. A novel interference mitigation technique of Reverse Frequency Allocation (RFA) scheme is introduced, which provides intercell orthogonality by dividing the cell into spatial regions and optimally allocating the frequency resources. RFA enhances the data rates of downlink femto users by eliminating the cross-tier interference from macro base station (MBS). In this paper, we extend the multiple region RFA scheme in multi-cellular network to further mitigate the impact of interference in the adjacent cells. In addition, we also develop a hybrid RFA scheme that merges the benefits of different RFA schemes in terms of large bandwidth and limited interference to achieve higher data rates. Simulation results show that the modified RFA (M-RFA) schemes exhibit superior performance as compared to the conventional RFA schemes in terms of userfairness and improved sum capacity. For the evaluation of system performance, several metrics such as outage probability, sum rates and outage capacity have been analyzed for satisfying the constraint of minimum capacity requirement of cell edge users. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
463 |
_tConsumer Communications and Networking (CCNC) _o14th IEEE Networking Conference, Las Vegas, 8-11 Jan. 2017 _v[P. 905-910] _d2017 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _a5G Heterogeneous network | |
610 | 1 | _areverse frequencyallocation | |
610 | 1 | _ainterference | |
610 | 1 | _asum-rate | |
610 | 1 | _aoutage capacity | |
610 | 1 | _aпомехи | |
610 | 1 | _aскорость | |
610 | 1 | _aпропускная способность | |
610 | 1 | _aсвязь | |
610 | 1 | _aсети | |
700 | 1 |
_aIjaz _bA. A. |
|
701 | 1 |
_aHassan _bS. A. _gSyed Ali |
|
701 | 1 |
_aDzhayakodi (Jayakody) Arachshiladzh _bD. N. K. _cspecialist in the field of electronics _cProfessor of Tomsk Polytechnic University _f1983- _gDushanta Nalin Kumara _2stltpush _3(RuTPU)RU\TPU\pers\37962 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bНаучно-образовательный центр "Автоматизация и информационные технологии" _h8422 _2stltpush _3(RuTPU)RU\TPU\col\27515 |
801 | 2 |
_aRU _b63413507 _c20220119 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1109/CCNC.2017.7983253 | |
942 | _cCF |