000 03835nlm1a2200481 4500
001 666867
005 20231030042051.0
035 _a(RuTPU)RU\TPU\network\38071
035 _aRU\TPU\network\38002
090 _a666867
100 _a20220202a2022 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aA robust approach to pore pressure prediction applying petrophysical log data aided by machine learning techniques
_fZhang Guodao, Sh. Davoodi, Shamshirband Shahab [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: P. 2245-2247]
330 _aDetermination of pore pressure (PP), a key reservoir parameter that is beneficial for evaluating geomechanical parameters of the reservoir, is so important in oil and gas fields development. Accurate estimation of PP is also essential for safe drilling of oil and gas wells since PP data are used as the input for safe mud window determination. In the present study, empirical equations along with machine learning methods, namely random forest algorithm, support vector regression (SVR) algorithm, artificial neural network (ANN) algorithm, and decision tree (DT) algorithm, are employed for PP prediction applying well log data. To this end, 2827 data records collected from three wells (Well A, Well B, and Well C) drilled in one of the Middle East oil fields are used. The dataset of Wells A and B is used for models' training, validating, and testing, while Well C dataset is applied for evaluating the models' generalizability in PP prediction in the field under study. To construct the predictive algorithms, 12 input variables are initially considered in the study. A feature selection analysis is conducted to find the most influential input variables set for developing PP predictive models. The results obtained suggest that the 9-input-variable set is the most efficient combination of inputs used in the ML models construction. Among all the four ML algorithms proposed, the DT algorithm presents the most accurate predictions for PP, delivering R2 and RMSE values of 0.9985 and 14.460 psi, respectively. Furthermore, the model generalization analysis results reveal that the 9-input-variable DT model developed can be used for PP prediction throughout the field of study since it presented an excellent accuracy performance in predicting PP when applied to Well C dataset.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tEnergy Reports
463 _tVol. 8
_v[P. 2233-2247]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _apore pressure
610 1 _amachine learning algorithms
610 1 _apetrophysical data
610 1 _adecision tree algorithm
610 1 _aалгоритмы
610 1 _aмашинное обучение
610 1 _aпетрофизические данные
610 1 _aпоровое давление
701 0 _aZhang Guodao
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
701 0 _aShamshirband Shahab
701 0 _aGhorbani Hamzeh
701 0 _aMosavi Amir
701 0 _aMoslehpour Massoud
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20220202
_gRCR
856 4 _uhttps://doi.org/10.1016/j.egyr.2022.01.012
942 _cCF