000 02416nlm1a2200397 4500
001 666950
005 20231030042054.0
035 _a(RuTPU)RU\TPU\network\38154
035 _aRU\TPU\network\38153
090 _a666950
100 _a20220208a2018 k y0engy50 ba
101 0 _aeng
_deng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aOne-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift
_fA. V. Shapovalov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 18 tit.]
330 _aThe Fokker–Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian’s iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tRussian Physics Journal
463 _tVol. 60, iss. 12
_v[P. 2063-2072]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _anonlinear Fokker–Planck equation
610 1 _aquasilocal approximation
610 1 _aLie symmetries
610 1 _atraveling waves
610 1 _aAdomian decomposition method
610 1 _aexact solutions
700 1 _aShapovalov
_bA. V.
_cmathematician
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1949-
_gAleksandr Vasilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31734
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20220208
_gRCR
856 4 _uhttps://doi.org/10.1007/s11182-018-1327-4
942 _cCF