000 | 04305nlm1a2200505 4500 | ||
---|---|---|---|
001 | 667039 | ||
005 | 20231030042057.0 | ||
035 | _a(RuTPU)RU\TPU\network\38243 | ||
035 | _aRU\TPU\network\34945 | ||
090 | _a667039 | ||
100 | _a20220217a2018 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aHigh resolution FTIR spectroscopy of fluoroform 12CHF3 and critical analysis of the infrared spectrum from 25 to 1500 cm−1 _fS. Albert, E. S. Bekhtereva, I. B. Bolotova [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 92 tit.] | ||
330 | _aWe report high-resolution ( 0.001 cm−1) Fourier Transform Infrared spectra of fluoroform (CHF3) including the pure rotational (far infrared or THz) range (28-65 cm−1), the ν3 fundamental ( = 700.099 cm−1), as well as the associated “hot' band 2ν3 − ν3 ( = 699.295 cm−1) and the 'atmospheric window' range 1100-1250 cm−1 containing the strongly coupled polyad of the levels ν2, ν5 and ν3 + ν6, at room temperature and at 120 K using the collisional cooling cell coupled to our Bruker IFS 125 HR prototype (ZP2001) spectrometer and Bruker IFS 125 HR ETH-SLS prototype at the Swiss Light Source providing intense synchrotron radiation. The pure rotational spectra provide new information about the vibrational ground state of CHF3, which is useful for further analysis of excited vibrational states. The ν3 fundamental band is re-investigated together with the corresponding 'hot' band 2ν3 − ν3 leading to an extension of the existing line lists up to 4430 transitions with = 66 for ν3 and 1040 transitions with = 43 for 2ν3 − ν3. About 6000 transitions were assigned to rovibrational levels in the polyad ν2/ν5/ν3 + ν6 with = 63 for ν2 ( = 1141.457 cm−1), = 63 for ν5 ( = 1157.335 cm−1) and = 59 for ν3 + ν6 ( = 1208.771 cm−1)( = in each case). The resonance interactions between the ν2, ν5 and ν3 + ν6 states have been taken into account providing an accurate set of effective hamiltonian parameters, which reproduce the experimental results with an accuracy close to the experimental uncertainties (with a root mean square deviation drms = 0.00025 cm−1). The analysis is further extended to the ν4 fundamental ( = 1377.847 cm−1) interacting with 2ν3 ( = 1399.394 cm−1). The results are discussed in relation to the importance of understanding the spectra of CHF3 as a greenhouse gas and as part of our large effort to measure and understand the complete spectrum of CHF3 from the far-infrared to the near-infrared as a prototype for intramolecular quantum dynamics and rovibrational energy redistribution. | ||
461 | _tMolecular Physics | ||
463 |
_tVol. 116, iss. 9 _v[P. 1091-1107] _d2018 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aCHF3 | |
610 | 1 | _afluoroform | |
610 | 1 | _ahigh-resolution infrared spectroscopy | |
610 | 1 | _agreenhouse gas absorption | |
610 | 1 | _aintramolecular quantum dynamics | |
610 | 1 | _aFTI | |
610 | 1 | _aRTHz | |
610 | 1 | _aинфракрасная спектроскопия | |
610 | 1 | _aпоглощение | |
610 | 1 | _aпарниковые газы | |
610 | 1 | _aквантовая динамика | |
701 | 1 |
_aAlbert _bS. _gSieghard |
|
701 | 1 |
_aBekhtereva _bE. S. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1974- _gElena Sergeevna _2stltpush _3(RuTPU)RU\TPU\pers\34450 |
|
701 | 1 |
_aBolotova _bI. B. |
|
701 | 1 |
_aHollenstein _bHans _gH. A. |
|
701 | 1 |
_aQuack _bM. _gMartin |
|
701 | 1 |
_aUlenekov (Ulenikov) _bO. N. _cphysicist _cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences _f1949- _gOleg Nikolaevich _2stltpush _3(RuTPU)RU\TPU\pers\34331 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20220217 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1080/00268976.2017.1392628 | |
942 | _cCF |