000 04305nlm1a2200505 4500
001 667039
005 20231030042057.0
035 _a(RuTPU)RU\TPU\network\38243
035 _aRU\TPU\network\34945
090 _a667039
100 _a20220217a2018 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aHigh resolution FTIR spectroscopy of fluoroform 12CHF3 and critical analysis of the infrared spectrum from 25 to 1500 cm−1
_fS. Albert, E. S. Bekhtereva, I. B. Bolotova [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 92 tit.]
330 _aWe report high-resolution ( 0.001 cm−1) Fourier Transform Infrared spectra of fluoroform (CHF3) including the pure rotational (far infrared or THz) range (28-65 cm−1), the ν3 fundamental ( = 700.099 cm−1), as well as the associated “hot' band 2ν3 − ν3 ( = 699.295 cm−1) and the 'atmospheric window' range 1100-1250 cm−1 containing the strongly coupled polyad of the levels ν2, ν5 and ν3 + ν6, at room temperature and at 120 K using the collisional cooling cell coupled to our Bruker IFS 125 HR prototype (ZP2001) spectrometer and Bruker IFS 125 HR ETH-SLS prototype at the Swiss Light Source providing intense synchrotron radiation. The pure rotational spectra provide new information about the vibrational ground state of CHF3, which is useful for further analysis of excited vibrational states. The ν3 fundamental band is re-investigated together with the corresponding 'hot' band 2ν3 − ν3 leading to an extension of the existing line lists up to 4430 transitions with = 66 for ν3 and 1040 transitions with = 43 for 2ν3 − ν3. About 6000 transitions were assigned to rovibrational levels in the polyad ν2/ν5/ν3 + ν6 with = 63 for ν2 ( = 1141.457 cm−1), = 63 for ν5 ( = 1157.335 cm−1) and = 59 for ν3 + ν6 ( = 1208.771 cm−1)( = in each case). The resonance interactions between the ν2, ν5 and ν3 + ν6 states have been taken into account providing an accurate set of effective hamiltonian parameters, which reproduce the experimental results with an accuracy close to the experimental uncertainties (with a root mean square deviation drms = 0.00025 cm−1). The analysis is further extended to the ν4 fundamental ( = 1377.847 cm−1) interacting with 2ν3 ( = 1399.394 cm−1). The results are discussed in relation to the importance of understanding the spectra of CHF3 as a greenhouse gas and as part of our large effort to measure and understand the complete spectrum of CHF3 from the far-infrared to the near-infrared as a prototype for intramolecular quantum dynamics and rovibrational energy redistribution.
461 _tMolecular Physics
463 _tVol. 116, iss. 9
_v[P. 1091-1107]
_d2018
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aCHF3
610 1 _afluoroform
610 1 _ahigh-resolution infrared spectroscopy
610 1 _agreenhouse gas absorption
610 1 _aintramolecular quantum dynamics
610 1 _aFTI
610 1 _aRTHz
610 1 _aинфракрасная спектроскопия
610 1 _aпоглощение
610 1 _aпарниковые газы
610 1 _aквантовая динамика
701 1 _aAlbert
_bS.
_gSieghard
701 1 _aBekhtereva
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1974-
_gElena Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\34450
701 1 _aBolotova
_bI. B.
701 1 _aHollenstein
_bHans
_gH. A.
701 1 _aQuack
_bM.
_gMartin
701 1 _aUlenekov (Ulenikov)
_bO. N.
_cphysicist
_cProfessor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences
_f1949-
_gOleg Nikolaevich
_2stltpush
_3(RuTPU)RU\TPU\pers\34331
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20220217
_gRCR
856 4 _uhttps://doi.org/10.1080/00268976.2017.1392628
942 _cCF