000 04796nlm1a2200625 4500
001 667326
005 20231030042107.0
035 _a(RuTPU)RU\TPU\network\38531
035 _aRU\TPU\network\36495
090 _a667326
100 _a20220316a2021 k y0engy50 ba
101 0 _aeng
102 _aCH
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aAortography Keypoint Tracking for Transcatheter Aortic Valve Implantation Based on Multi-Task Learning
_fV. V. Danilov, K. Yu. Klyshnikov, O. M. Gerget [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 34 tit.].
330 _aCurrently, transcatheter aortic valve implantation (TAVI) represents the most efficient treatment option for patients with aortic stenosis, yet its clinical outcomes largely depend on the accuracy of valve positioning that is frequently complicated when routine imaging modalities are applied. Therefore, existing limitations of perioperative imaging underscore the need for the development of novel visual assistance systems enabling accurate procedures. In this paper, we propose an original multi-task learning-based algorithm for tracking the location of anatomical landmarks and labeling critical keypoints on both aortic valve and delivery system during TAVI. In order to optimize the speed and precision of labeling, we designed nine neural networks and then tested them to predict 11 keypoints of interest. These models were based on a variety of neural network architectures, namely MobileNet V2, ResNet V2, Inception V3, Inception ResNet V2 and EfficientNet B5. During training and validation, ResNet V2 and MobileNet V2 architectures showed the best prediction accuracy/time ratio, predicting keypoint labels and coordinates with 97/96% accuracy and 4.7/5.6% mean absolute error, respectively. Our study provides evidence that neural networks with these architectures are capable to perform real-time predictions of aortic valve and delivery system location, thereby contributing to the proper valve positioning during TAVI.
338 _bРоссийский научный фонд
_d18-75-10061
461 _tFrontiers in Cardiovascular Medicine
463 _tVol. 8
_v[697737, 15 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _akeypoint tracking
610 1 _amulti-task learning
610 1 _atranscatheter aortic valve replacement
610 1 _adeep learning-CNN
610 1 _amedical image analysis
610 1 _aaortography
610 1 _aотслеживание
610 1 _aключевые точки
610 1 _aзамена
610 1 _aклапаны
610 1 _aмедицинские изображения
610 1 _aаортография
610 1 _aимплантация
610 1 _aвизуализация
610 1 _aмногозадачное обучение
701 1 _aDanilov
_bV. V.
_cspecialist in the field of informatics and computer technology
_cengineer of Tomsk Polytechnic University
_f1989-
_gVyacheslav Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\37831
701 1 _aKlyshnikov
_bK. Yu.
_gKirill Yurjevich
701 1 _aGerget
_bO. M.
_cSpecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University, Doctor of Sciences
_f1974-
_gOlga Mikhailovna
_2stltpush
_3(RuTPU)RU\TPU\pers\31430
701 1 _aSkirnevsky
_bI. P.
_cspecialist in the field of automation and computer systems
_ceducational master Tomsk Polytechnic University
_f1989-
_gIgor Petrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35105
701 1 _aKutikhin
_bA. G.
_gAnton Gennadievich
701 1 _aShilov
_bA. A.
_gAleksandr
701 1 _aGanuykov
_bV. I.
_gVladimir
701 1 _aOvcharenko
_bE. A.
_gEvgeny Andreevich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bНаучно-образовательная лаборатория обработки и анализа больших данных
_h7959
_2stltpush
_3(RuTPU)RU\TPU\col\23599
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20220505
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/70713
856 4 _uhttps://doi.org/10.3389/fcvm.2021.697737
942 _cCF