000 04603nlm1a2200625 4500
001 667380
005 20231030042109.0
035 _a(RuTPU)RU\TPU\network\38585
035 _aRU\TPU\network\35720
090 _a667380
100 _a20220321a2021 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aChemical Enhancement vs Molecule-Substrate Geometry in Plasmon-Enhanced Spectroscopy
_fR. D. Rodriguez (Rodriges) Contreras, J. V. Carlos, A. Khodadadi [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 3 tit.]
330 _aLight interaction with metal nanostructures exposes exciting phenomena such as strong amplification and localization of electromagnetic fields. In surface-enhanced Raman spectroscopy (SERS), the strong signal amplification is attributed to two fundamental mechanisms, electromagnetic and chemical enhancement (EM and CM, respectively). While the EM mechanism is accepted as the main responsible for signal amplification, a long-standing controversy on the CM mechanism's role still prevails. The CM contribution can be evidenced when compared to the nonenhanced (or bulk) Raman signal as a change in intensity ratios, peak shifts, or appearance of new Raman modes. However, it is also possible to induce similar spectral variations by changing the relative orientation between the electric field and molecule or when a high electric field gradient is achieved. Therefore, in this work, we show specific spectral changes in SERS affected by the molecular orientation, while changes in other modes can be attributed to chemical enhancement. On the basis of our experimental and quantum chemical results for cobalt phthalocyanine, we identify low-frequency Raman modes (LFMs) sensitive to charge-transfer compared to high-frequency modes (HFMs) that are rather sensitive to geometrical effects and temperature changes. These results provide new evidence on the role of molecule excitation/polarization that comes now as a more general and dominant effect than the chemical enhancement mechanism so far attributed to charge-transfer processes. These findings make it possible to engineer multifunctional Raman molecular probes with selective sensitivity to the local environment (HFMs) and charge-transfer processes (LFMs).
333 _aРежим доступа: по договору с организацией-держателем ресурса
338 _bРоссийский научный фонд
_d19-75-10046
338 _bРоссийский фонд фундаментальных исследований
_d18-42-700014 p_a
461 _tACS Photonics
463 _tVol. 8, iss. 8
_v[P. 2243-2255]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aSERS
610 1 _aspectral artifacts
610 1 _aplasmonics
610 1 _ananospectroscopy
610 1 _asurface-enhanced Raman spectroscopy
610 1 _aphthalocyanines
610 1 _aquantum chemistry
610 1 _aплазмоника
610 1 _aрамановская спектроскопия
610 1 _aфталоцианины
610 1 _aподложки
701 1 _aRodriguez (Rodriges) Contreras
_bR. D.
_cVenezuelan physicist, doctor of science
_cProfessor of Tomsk Polytechnic University
_f1982-
_gRaul David
_2stltpush
_3(RuTPU)RU\TPU\pers\39942
701 1 _aCarlos
_bJ. V.
_gVillagomez
701 1 _aKhodadadi
_bA.
_gAmirhassan
701 1 _aKupfer
_bS.
_gStephan
701 1 _aAverkiev
_bA. A.
_cSpecialist in the field of electronics
_cResearch Engineer of Tomsk Polytechnic University
_f1996-
_gAndrey Alekseevich
_2stltpush
_3(RuTPU)RU\TPU\pers\47130
701 1 _aDedelaite
_bL.
_gLina
701 1 _aTang
_bF.
_gFeng
701 1 _aKhaywah
_bM. Y.
_gMohammad
701 1 _aKolchuzhin
_bV.
_gVladimir
701 1 _aRamanavicius
_bA.
_gArunas
701 1 _aAdam
_bP.-M.
_gPierre-Michel
701 1 _aGrafe
_bS.
_gStefanie
701 1 _aSheremet
_bE. S.
_cphysicist
_cProfessor of Tomsk Polytechnic University
_f1988-
_gEvgeniya Sergeevna
_2stltpush
_3(RuTPU)RU\TPU\pers\40027
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20220321
_gRCR
856 4 _uhttps://doi.org/10.1021/acsphotonics.1c00001
942 _cCF