000 03907nlm1a2200457 4500
001 667686
005 20231030042121.0
035 _a(RuTPU)RU\TPU\network\38897
035 _aRU\TPU\network\36371
090 _a667686
100 _a20220413a2021 k y0engy50 ba
101 0 _aeng
102 _aCH
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEWOA-OPF: Effective Whale Optimization Algorithm to Solve Optimal Power Flow Problem
_fM. H. Nadimi-Shahraki, S. Taghian, S. Mirjalili [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 101 tit.]
330 _aThe optimal power flow (OPF) is a vital tool for optimizing the control parameters of a power system by considering the desired objective functions subject to system constraints. Metaheuristic algorithms have been proven to be well-suited for solving complex optimization problems. The whale optimization algorithm (WOA) is one of the well-regarded metaheuristics that is widely used to solve different optimization problems. Despite the use of WOA in different fields of application as OPF, its effectiveness is decreased as the dimension size of the test system is increased. Therefore, in this paper, an effective whale optimization algorithm for solving optimal power flow problems (EWOA-OPF) is proposed. The main goal of this enhancement is to improve the exploration ability and maintain a proper balance between the exploration and exploitation of the canonical WOA. In the proposed algorithm, the movement strategy of whales is enhanced by introducing two new movement strategies: (1) encircling the prey using Levy motion and (2) searching for prey using Brownian motion that cooperate with canonical bubble-net attacking. To validate the proposed EWOA-OPF algorithm, a comparison among six well-known optimization algorithms is established to solve the OPF problem. All algorithms are used to optimize single- and multi-objective functions of the OPF under the system constraints. Standard IEEE 6-bus, IEEE 14-bus, IEEE 30-bus, and IEEE 118-bus test systems are used to evaluate the proposed EWOA-OPF and comparative algorithms for solving the OPF problem in diverse power system scale sizes. The comparison of results proves that the EWOA-OPF is able to solve single- and multi-objective OPF problems with better solutions than other comparative algorithms.
461 _tElectronics
463 _tVol. 10, iss. 23
_v[2975, 23 p.]
_d2021
610 1 _aтруды учёных ТПУ
610 1 _aэлектронный ресурс
610 1 _aoptimization
610 1 _ametaheuristic algorithms
610 1 _aoptimal power flow
610 1 _awhale optimization algorithm
610 1 _aоптимизация
610 1 _aметаэвристические алгоритмы
701 1 _aNadimi-Shahraki
_bM. H.
_gMohammad
701 1 _aTaghian
_bS.
_gShokooh
701 1 _aMirjalili
_bS.
_gSeyedali
701 1 _aAbualigah
_bL.
_gLaith
701 1 _aMokhamed Elsaed (Mohamed Abd Elaziz)
_bA. M.
_cSpecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University
_f1987-
_gAkhmed Mokhamed
_2stltpush
_3(RuTPU)RU\TPU\pers\46943
701 1 _aOliva Navarro
_bD. A.
_cspecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDiego Alberto
_2stltpush
_3(RuTPU)RU\TPU\pers\37366
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20220413
_gRCR
856 4 0 _uhttps://doi.org/10.3390/electronics10232975
942 _cCF