000 | 03589nlm1a2200373 4500 | ||
---|---|---|---|
001 | 667739 | ||
005 | 20231030042124.0 | ||
035 | _a(RuTPU)RU\TPU\network\38950 | ||
090 | _a667739 | ||
100 | _a20220418a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aMaximizing the latency fairness in UAV-assisted MEC system _fH. Hydher, D. N. K. Dzhayakodi (Jayakody) Arachshiladzh, S. Panic |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 36 tit.] | ||
330 | _aUnmanned aerial vehicles (UAV) assisted edge computing has risen as an assuring technique to accommodate ubiquitous edge computation for resource-limited devices. Thus, this paper proposes an approach to maximize the latency fairness in a UAV-assisted multi-access edge computing (MEC) system. To maximize latency fairness, the authors focus on minimizing the maximum latency experienced among the users. In here, multiple ground users (GUs) offload their tasks to MEC UAV in the absence or unavailability of ground servers due to a disaster or heavy traffic where an iterative algorithm is proposed to minimize the maximum latency among the users subject to minimum control link rate and total power constraints. Sequentially, the UAVs' 3D location, offloading ratio, GUs' transmit power and GUs' computational capacity are optimized. The location of the UAV is optimized by using the novel approach, guided pattern search algorithm while the altitude of the UAV is optimized by analyzing the elevation angle dependant behaviour of the channel gain. A simple approach is utilized for optimizing the offloading ratio of the users by considering the problem as minimizing the point-wise maximum of two convex functions while the bisection method is used to optimize the power allocation. Numerical simulation results illustrate that the proposed approach outperforms other baseline approaches in convergence, minimizing the maximum latency and maximizing and maintaining the fairness among the GUs. Furthermore, it is proved that the guided pattern search algorithm converges at least 3.5 times better while the proposed combined optimization gives 400% fairness gain, in comparison with the baseline approach. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tIET Intelligent Transport Systems | ||
463 |
_tVol. 16, iss. 4 _v[P. 434-444] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aбеспилотные летательные аппараты | |
610 | 1 | _aмаксимизация | |
700 | 1 |
_aHydher _bH. _gHassaan |
|
701 | 1 |
_aDzhayakodi (Jayakody) Arachshiladzh _bD. N. K. _cspecialist in the field of electronics _cProfessor of Tomsk Polytechnic University _f1983- _gDushanta Nalin Kumara _2stltpush _3(RuTPU)RU\TPU\pers\37962 |
|
701 | 1 |
_aPanic _bS. _gStefan |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа информационных технологий и робототехники _bНаучно-образовательный центр "Автоматизация и информационные технологии" _h8422 _2stltpush _3(RuTPU)RU\TPU\col\27515 |
801 | 2 |
_aRU _b63413507 _c20220505 _gRCR |
|
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/70709 | |
856 | 4 | _uhttps://doi.org/10.1049/itr2.12126 | |
942 | _cCF |