000 03589nlm1a2200373 4500
001 667739
005 20231030042124.0
035 _a(RuTPU)RU\TPU\network\38950
090 _a667739
100 _a20220418a2022 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMaximizing the latency fairness in UAV-assisted MEC system
_fH. Hydher, D. N. K. Dzhayakodi (Jayakody) Arachshiladzh, S. Panic
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 36 tit.]
330 _aUnmanned aerial vehicles (UAV) assisted edge computing has risen as an assuring technique to accommodate ubiquitous edge computation for resource-limited devices. Thus, this paper proposes an approach to maximize the latency fairness in a UAV-assisted multi-access edge computing (MEC) system. To maximize latency fairness, the authors focus on minimizing the maximum latency experienced among the users. In here, multiple ground users (GUs) offload their tasks to MEC UAV in the absence or unavailability of ground servers due to a disaster or heavy traffic where an iterative algorithm is proposed to minimize the maximum latency among the users subject to minimum control link rate and total power constraints. Sequentially, the UAVs' 3D location, offloading ratio, GUs' transmit power and GUs' computational capacity are optimized. The location of the UAV is optimized by using the novel approach, guided pattern search algorithm while the altitude of the UAV is optimized by analyzing the elevation angle dependant behaviour of the channel gain. A simple approach is utilized for optimizing the offloading ratio of the users by considering the problem as minimizing the point-wise maximum of two convex functions while the bisection method is used to optimize the power allocation. Numerical simulation results illustrate that the proposed approach outperforms other baseline approaches in convergence, minimizing the maximum latency and maximizing and maintaining the fairness among the GUs. Furthermore, it is proved that the guided pattern search algorithm converges at least 3.5 times better while the proposed combined optimization gives 400% fairness gain, in comparison with the baseline approach.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tIET Intelligent Transport Systems
463 _tVol. 16, iss. 4
_v[P. 434-444]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aбеспилотные летательные аппараты
610 1 _aмаксимизация
700 1 _aHydher
_bH.
_gHassaan
701 1 _aDzhayakodi (Jayakody) Arachshiladzh
_bD. N. K.
_cspecialist in the field of electronics
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDushanta Nalin Kumara
_2stltpush
_3(RuTPU)RU\TPU\pers\37962
701 1 _aPanic
_bS.
_gStefan
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bНаучно-образовательный центр "Автоматизация и информационные технологии"
_h8422
_2stltpush
_3(RuTPU)RU\TPU\col\27515
801 2 _aRU
_b63413507
_c20220505
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/70709
856 4 _uhttps://doi.org/10.1049/itr2.12126
942 _cCF