000 | 03701nlm1a2200517 4500 | ||
---|---|---|---|
001 | 667890 | ||
005 | 20231030042130.0 | ||
035 | _a(RuTPU)RU\TPU\network\39101 | ||
035 | _aRU\TPU\network\37503 | ||
090 | _a667890 | ||
100 | _a20220513a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aSilica coating of Fe3O4 magnetic nanoparticles with PMIDA assistance to increase the surface area and enhance peptide immobilization efficiency _fA. M. Demin, A. I. Maksimovskikh, A. V. Mekhaev [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 65 tit.] | ||
330 | _aThe high efficiency of using N-(phosphonomethyl)iminodiacetic acid (PMIDA) as a surfactant for formation of a silica coating on Fe3O4 magnetic nanoparticles (MNPs) with a large surface area has been demonstrated. The coating of PMIDA-stabilized MNPs with silica and their further APS-functionalization significantly increased the specific area (up to 203 m2 g−1) and the number of amino groups (up to 1.12 mmol/g) grafted on their surface compared to nanomaterials synthesized without preliminary SiO2-coating. The comparative study of the peptide modification efficiency, using as an example pH-low insertion peptide (pHLIP), of MNPs coated with 3-aminopropylsilane (APS) or SiO2/APS was carried out. It has been shown that silica coating of PMIDA-stabilized MNPs leads to a significant increase in the degree of immobilization of the peptide (up to 22 μmol per g of MNPs). Comprehensive characterization of the obtained materials at each stage of the synthesis was carried out using scanning electron microscopy (SEM), energy dispersive X-ray fluorescence spectroscopy (EDX), BET analysis, ATR Fourier transformed infrared spectroscopy (FTIR), termogravimetric analysis (TGA), CHN-elemental analysis, dynamic light scattering (DLS), and vibrating sample magnetometry (VSM). The proposed approach to applying SiO2-coating of MNPs can be useful for design of new materials for biomedical and chemical purposes. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tCeramics International | ||
463 |
_tVol. 47, iss. 16 _v[P. 23078-23087] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aB. Nanocomposites | |
610 | 1 | _aD. Ferrites | |
610 | 1 | _aB. Surfaces | |
610 | 1 | _aD. SiO2 | |
610 | 1 | _aPMIDA | |
610 | 1 | _aнанокомпозиты | |
610 | 1 | _aферриты | |
610 | 1 | _aповерхности | |
701 | 1 |
_aDemin _bA. M. _gAleksandr Mikhaylovich |
|
701 | 1 |
_aMaksimovskikh _bA. I. _gAleksey Ivanovich |
|
701 | 1 |
_aMekhaev _bA. V. _gAleksandr Vladimirovich |
|
701 | 1 |
_aKuznetsov _bD. K. _gDmitry Konstantinovich |
|
701 | 1 |
_aMinin _bA. S. _gArtem Sergeevich |
|
701 | 1 |
_aPershina _bA. G. _cbiologist _cAssociate Professor of Tomsk Polytechnic University, Candidate of biological sciences _f1981- _gAleksandra Gennadievna _2stltpush _3(RuTPU)RU\TPU\pers\32466 |
|
701 | 1 |
_aUymin _bM. A. _gMikhail Aleksandrovich |
|
701 | 1 |
_aShur _bV. Ya. _gVladimir Yakovlevich |
|
701 | 1 |
_aKrasnov _bV. P. _gViktor Pavlovich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20220513 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.ceramint.2021.04.310 | |
942 | _cCF |