000 04186nlm1a2200433 4500
001 667926
005 20231030042131.0
035 _a(RuTPU)RU\TPU\network\39137
090 _a667926
100 _a20220516a2021 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aA Statistical Analysis of Wind Speed Probabilistic Distributions for the Wind Power Assessment in Different Regions
_fYu. D. Bay, N. Yu. Ruban, A. S. Gusev, M. V. Andreev
203 _aText
_celectronic
300 _aTitle screen
320 _a[References.: 20 tit.]
330 _aThe penetration of renewable energy sources (RES) into the electricity supply is gaining popularity all over the world, including countries that have large oil and gas reserves, since only the development of alternative energy will help avoid regression and take a green path development, reducing the damage to the environment. According to estimates of the International Energy Agency (IEA), the capacity of RES units built in China in 2016 was 34 GW, and Australia is one of the world leaders in the photovoltaic power plants installation, the share of which in the Australian electricity production exceeds 3%. It should be noted, that the final power generation capacity and stability are stochastic (probabilistic) in nature. Unlike the classical type generator, the output RES characteristics depend on the geographical features of the installation area, the season, and prevailing winds. Risks associated with inaccurate knowledge of the cumulative distribution function (CDF) describing these sources, as well as environmental uncertainties, are the reasons why it is more difficult for distribution network operators (DNO) to take RES into account in the power balance calculations. The wind speed CDF clarification can provide significant assistance in predicting the RES power production.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tPrzeglad Elektrotechniczny
463 _tVol. 97, iss. 12
_v[P. 82-85]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _apower system
610 1 _awind speed time series
610 1 _aprobability density function
610 1 _acumulative distribution function
610 1 _aэнергосистемы
610 1 _aскорость ветра
701 1 _aBay
_bYu. D.
_cSpecialist in the field of electric power engineering
_cAssistant of the Department of Tomsk Polytechnic University
_f1991-
_gYuly Dmitrievich
_2stltpush
_3(RuTPU)RU\TPU\pers\40030
701 1 _aRuban
_bN. Yu.
_cspecialist in the field of electric power engineering
_cAssociate Professor of Tomsk Polytechnic University, Candidate of Sciences
_f1988-
_gNikolay Yurievich
_2stltpush
_3(RuTPU)RU\TPU\pers\34749
701 1 _aGusev
_bA. S.
_cspecialist in the field of electric power engineering
_cProfessor of Tomsk Polytechnic University, Doctor of technical sciences
_f1947-
_gAlexander Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\32885
701 1 _aAndreev
_bM. V.
_cspecialist in the field of electric power engineering
_cAssociate Professor of Tomsk Polytechnic University, Candidate of technical sciences
_f1987-
_gMikhail Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\35035
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-исследовательская лаборатория "Моделирование электроэнергетических систем"
_h192
_2stltpush
_3(RuTPU)RU\TPU\col\23567
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bОтделение электроэнергетики и электротехники
_h8022
_2stltpush
_3(RuTPU)RU\TPU\col\23505
801 2 _aRU
_b63413507
_c20220516
_gRCR
856 4 _uhttps://doi.org/10.15199/48.2021.12.14
942 _cCF