000 | 04207nlm1a2200673 4500 | ||
---|---|---|---|
001 | 668017 | ||
005 | 20231030042134.0 | ||
035 | _a(RuTPU)RU\TPU\network\39228 | ||
035 | _aRU\TPU\network\39129 | ||
090 | _a668017 | ||
100 | _a20220527a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aCH | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aConventional vs. Innovative Protocols for the Extraction of Polysaccharides from Macroalgae _fD. Spagnuolo, A. Di Martino, V. Zammuto [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 45 tit.] | ||
330 | _aMacroalgae are one of the most environmentally friendly resources, and their industrial by-products should also be sustainable. Algal polysaccharides represent valuable products, and the definition of new eco-sustainable extraction processes, ensuring a safe and high-quality product, is a new goal in the context of reducing the carbon footprint. The aim of the present work was to determine the influence of the extraction methodology on the properties and structure of the polysaccharides, comparing conventional and innovative microwave-assisted methods. We focused on extraction times, yield, chemical composition and, finally, biological activities of raw polymers from three macroalgal species of Chlorophyta, Rhodophyta and Phaeophyceae. The main objective was to design a sustainable process in terms of energy and time savings, with the aim of developing subsequent application at the industrial level. Extraction efficacy was likely dependent on the physico-chemical polysaccharide properties, while the use of the microwave did not affect their chemical structure. Obtained results indicate that the innovative method could be used as an alternative to the conventional one to achieve emulsifiers and bacterial antiadhesives for several applications. Natural populations of invasive algae were used rather than cultivated species in order to propose the valorization of unwanted biomasses, which are commonly treated as waste, converting them into a prized resource. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tSustainability | ||
463 |
_tVol. 14, iss. 10 _v[5750, 14 p.] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aalginate | |
610 | 1 | _aantibiofilm assay | |
610 | 1 | _acarragenans | |
610 | 1 | _aemulsifying activity | |
610 | 1 | _aDNA barcoding | |
610 | 1 | _aFourier transform infrared spectroscopy-ATR | |
610 | 1 | _agas chromatography with flame ionization detection | |
610 | 1 | _agel permeation chromatography | |
610 | 1 | _ainvasive macroalgal biomasses | |
610 | 1 | _aulvans | |
610 | 1 | _aальгинаты | |
610 | 1 | _aкаррагинан | |
610 | 1 | _aэмульгирующая способность | |
610 | 1 | _aДНК-технология | |
610 | 1 | _aинфракрасная спектроскопия | |
610 | 1 | _aпреобразование Фурье | |
610 | 1 | _aгазовая хроматография | |
610 | 1 | _aдетектирование | |
610 | 1 | _aгель-проникающая хроматография | |
610 | 1 | _aбиомасса | |
701 | 1 |
_aSpagnuolo _bD. _gDamiano |
|
701 | 1 |
_aDi Martino _bA. _corganic chemist _cresearch of Tomsk Polytechnic University _f1984- _gAntonio _2stltpush _3(RuTPU)RU\TPU\pers\39440 |
|
701 | 1 |
_aZammuto _bV. _gVincenzo |
|
701 | 1 |
_aMinicante _bS. A. _gSimona Armeliъ |
|
701 | 1 |
_aSpano _bA. _gAntonio |
|
701 | 1 |
_aManghisi _bA. _gAntonio |
|
701 | 1 |
_aGugliandolo _bC. _gConcetta |
|
701 | 1 |
_aMorabito _bM. _gMarina |
|
701 | 1 |
_aGenovese _bG. _gGiuseppa |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
801 | 2 |
_aRU _b63413507 _c20220527 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.3390/su14105750 | |
942 | _cCF |