000 04080nlm1a2200457 4500
001 668060
005 20231030042136.0
035 _a(RuTPU)RU\TPU\network\39284
035 _aRU\TPU\network\35049
090 _a668060
100 _a20220602a2022 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMagnetoelectric coupling studies in lead-free multiferroic (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3−(Ni0.7Zn0.3)Fe2O4 ceramic composites
_fI. Coondoo, J. Vidal, I. Bdikin [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 81 tit.]
330 _aLead-free multiferroic 3-0 type particulate composites with a composition (1−x)(Ba0.85Ca0.15Zr0.1Ti0.9O3) - x(Ni0.7Zn0.3Fe2O4) [(1−x)BCZT - xNZFO with 0 ≤ x ≤ 100 at%] were prepared using solid state reaction method. Structural and microstructural analysis using XRD, FESEM and Raman techniques confirmed the phase formation of the ferroelectric (BCZT) and magnetostrictive (NZFO) phases without any detectable presence of impurity phases. Rietveld refinement of the XRD data revealed a tetragonal (P4mm) and a cubic structure (Fd3‾m) for the BCZT and NZFO phases, respectively. Elemental compositions of the constituent phases were assessed by EDS and XPS analyses. Electrical, magnetic, and magnetoelectric (ME) measurements were performed. The composites exhibit typical well-saturated magnetic hysteresis (M−H) loops at room temperature, having very low coercive field (HC) values, indicating their soft ferromagnetic behavior. Various parameters extracted from the M−H curves including HC, magneto-crystalline anisotropy, squareness, and magnetization were found to depend on x. Frequency dependence of capacitance and admittance exhibited a resonance behavior corresponding to the radial mode of the electromechanical resonance (EMR). ME coefficients were studied in both longitudinal (αE33) and transverse (αE31) modes. The highest coupling coefficients, αE31 ∼14.5 mV/Oe.cm and αE33 ∼13 mV/Oe.cm were obtained for composite with 50 at% NZF at off-resonance frequency of 1 kHz. At the EMR frequency of 314 kHz, the αE31 value in 0.5BCZT-0.5NZFO composite enhanced enormously to ∼5.5 V/Oe.cm. The studies conclude that x = 0.5 is an optimum atomic fraction of NZFO in the particulate composite for maximum ME coupling.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tCeramics International
463 _tVol. 48, iss. 17
_v[P. 24439-24453]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _amultiferroic
610 1 _amagnetoelectric coupling
610 1 _aBCZT
610 1 _aNZFO
610 1 _acomposite
610 1 _aмультиферроики
610 1 _aкомпозиты
701 1 _aCoondoo
_bI.
_gIndrani
701 1 _aVidal
_bJ.
_gJoao
701 1 _aBdikin
_bI.
_gIgor
701 1 _aSurmenev
_bR. A.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences
_f1982-
_gRoman Anatolievich
_2stltpush
_3(RuTPU)RU\TPU\pers\31885
701 1 _aKholkin
_bA. L.
_cphysicist
_cDirector of the International Research Center for PMEM of the Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences
_f1954-
_gAndrei Leonidovich
_2stltpush
_3(RuTPU)RU\TPU\pers\47207
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_bНаучно-исследовательский центр "Физическое материаловедение и композитные материалы"
_h8209
_2stltpush
_3(RuTPU)RU\TPU\col\24957
801 2 _aRU
_b63413507
_c20220928
_gRCR
856 4 _uhttps://doi.org/10.1016/j.ceramint.2022.05.052
942 _cCF