000 03967nlm1a2200505 4500
001 668166
005 20231030042139.0
035 _a(RuTPU)RU\TPU\network\39390
035 _aRU\TPU\network\39277
090 _a668166
100 _a20220627a2022 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aCrystal Structure Defects in Titanium Nickelide after Abc Pressing at Lowered Temperature
_fA. I. Lotkov, V. N. Grishkov, R. S. Laptev [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 74 tit.]
330 _aThe experimental results regarding the effect of warm (573 K) abc pressing with an increase in the specified true strain, e, up to 9.55, on the microstructure and crystal structure defects (dislocations, vacancies) of the Ti49.8Ni50.2 (at %) alloy are presented. It is shown that all samples (regardless of e) have a two-level microstructure. The grains-subgrains of the submicrocrystalline scale level are in the volumes of large grains. The average sizes of both large grains and subgrain grains decrease with increasing e to 9.55 (from 27 to 12 µm and from 0.36 to 0.13 µm, respectively). All samples had a two-phase state (rhombohedral R and monoclinic B19′ martensitic phases) at 295 K. The full-profile analysis of X-ray reflections of the B2 phase obtained at 393 K shows that the dislocation density increases from 1014 m−2 to 1015 m−2 after pressing with e = 1.84 and reaches 2·1015 m−2 when e increases to 9.55. It has been established by positron annihilation lifetime spectroscopy that dislocations are the main type of defects in initial samples and the only type of defects in samples after abc pressing. The lifetime of positrons trapped by dislocations is 166 ps, and the intensity of this component increases from 83% in the initial samples to 99.4% after pressing with e = 9.55. The initial samples contain a component with a positron lifetime of 192 ps (intensity 16.4%), which corresponds to the presence of monovacancies in the nickel sublattice of the B2 phase (concentration ≈10−5). This component is absent in the positron lifetime spectra in the samples after pressing. The results of the analysis of the Doppler broadening spectroscopy correlate with the data obtained by the positron annihilation lifetime spectroscopy.
461 _tMaterials
463 _tVol. 15, iss. 12
_v[4298, 15 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _atitanium nickelide
610 1 _aabc pressing
610 1 _adislocation density
610 1 _avacancies
610 1 _apositron annihilation spectroscopy
610 1 _aникелид титана
610 1 _aпозитронная спектроскопия
701 1 _aLotkov
_bA. I.
_gAleksandr Ivanovich
701 1 _aGrishkov
_bV. N.
_gViktor Nikolaevich
701 1 _aLaptev
_bR. S.
_cphysicist, specialist in the field of non-destructive testing
_cAssociate Scientist of Tomsk Polytechnic University, Assistant, Candidate of Sciences
_f1987-
_gRoman Sergeevich
_2stltpush
_3(RuTPU)RU\TPU\pers\31884
701 1 _aMironov
_bYu. P.
_gYury Petrovich
701 1 _aZhapova
_bD. Yu.
_gDorzhima Yurjevna
701 1 _aGirsova
_bN. V.
_gNataljya Vasiljevna
701 1 _aGusarenko
_bA. A.
_gAleksandr Aleksandrovich
701 1 _aBarmina
_bE. G.
_gElena Georgievna
701 1 _aKashina
_bO. N.
_gOlga Nikolaevna
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа ядерных технологий
_bОтделение экспериментальной физики
_h7865
_2stltpush
_3(RuTPU)RU\TPU\col\23549
801 2 _aRU
_b63413507
_c20221026
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/73242
856 4 _uhttps://doi.org/10.3390/ma15124298
942 _cCF