000 04899nlm1a2200529 4500
001 668201
005 20231030042141.0
035 _a(RuTPU)RU\TPU\network\39425
035 _aRU\TPU\network\39288
090 _a668201
100 _a20220629a2022 k y0engy50 ba
101 0 _aeng
102 _aCH
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMethod for Detecting Far-Right Extremist Communities on Social Media
_fA. Yu. Karpova, A. O. Savelyev, S. A. Kuznetsov, A. D. Vilnin
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 63 tit.]
330 _aFar-right extremist communities actively promote their ideological preferences on social media. This provides researchers with opportunities to study these communities online. However, to explore these opportunities one requires a way to identify the far-right extremists’ communities in an automated way. Having analyzed the subject area of far-right extremist communities, we identified three groups of factors that influence the effectiveness of the research work. These are a group of theoretical, methodological, and instrumental factors. We developed and implemented a unique algorithm of calendar-correlation analysis (CCA) to search for specific online communities. We based CCA on a hybrid calendar correlation approach identifying potential far-right communities by characteristic changes in group activity around key dates of events that are historically crucial to those communities. The developed software module includes several functions designed to automatically search, process, and analyze social media data. In the current paper we present a process diagram showing CCA’s mechanism of operation and its relationship to elements of automated search software. Furthermore, we outline the limiting factors of the developed algorithm. The algorithm was tested on data from the Russian social network VKontakte. Two experimental data sets were formed: 259 far-right communities and the 49 most popular (not far-right) communities. In both cases, we calculated the type II error for two mutually exclusive hypotheses—far-right affiliation and no affiliation. Accordingly, for the first sample, Я = 0.81. For the second sample, Я = 0.02. The presented CCA algorithm was more effective at identifying far-right communities belonging to the alt-right and Nazi ideologies compared to the neo-pagan or manosphere communities. We expect that the CCA algorithm can be effectively used to identify other movements within far-right extremist communities when an appropriate foundation of expert knowledge is provided to the algorithm.
461 _tSocial Sciences
463 _tVol. 11, iss. 5
_v[200, 20 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aonline radicalization
610 1 _afar-right
610 1 _aextremism
610 1 _aterrorism
610 1 _asocial media analytics
610 1 _abig data
610 1 _aweb mining
610 1 _aрадикализация
610 1 _aэкстремизм
610 1 _aтерроризм
610 1 _aсоциальные сети
610 1 _aбольшие данные
701 1 _aKarpova
_bA. Yu.
_cphilosopher
_cProfessor of Tomsk Polytechnic University, Doctor of Social Sciences
_f1968-
_gAnna Yurievna
_2stltpush
_3(RuTPU)RU\TPU\pers\32542
701 1 _aSavelyev
_bA. O.
_cSpecialist in the field of informatics and computer technology
_cEngineer of Tomsk Polytechnic University
_f1987-
_gAleksey Olegovich
_2stltpush
_3(RuTPU)RU\TPU\pers\31388
701 1 _aKuznetsov
_bS. A.
_cspecialist in the field of information technology
_cEngineer of Tomsk Polytechnic University
_f1985-
_gSergey Anatoljeich
_2stltpush
_3(RuTPU)RU\TPU\pers\47274
701 1 _aVilnin
_bA. D.
_cSpecialist in the field of automation equipment and electronics
_cThe Head of the Laboratory of Tomsk Polytechnic University
_f1980-
_gAlexander Daniilovich
_2stltpush
_3(RuTPU)RU\TPU\pers\45840
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bШкола базовой инженерной подготовки
_bОтделение социально-гуманитарных наук
_h8033
_2stltpush
_3(RuTPU)RU\TPU\col\23512
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20221026
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/73246
856 4 _uhttps://doi.org/10.3390/socsci11050200
942 _cCF