000 04077nlm1a2200469 4500
001 668235
005 20231030042142.0
035 _a(RuTPU)RU\TPU\network\39459
035 _aRU\TPU\network\38447
090 _a668235
100 _a20220704a2022 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aRobust computational approach to determine the safe mud weight window using well-log data from a large gas reservoir
_fS. Beheshtian, M. Rajabi, Sh. Davoodi [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aA key parameter when drilling for gas and oil is to determine the safe mud weight window (SMWW) to ensure wellbore stability as part of a quantitative risk assessment (QRA). This study determines SMWW by predicting acceptable upper and lower limits of the bottom hole pressure window during over-balance drilling method. A novel machine learning method is developed to predict SMWW from ten well-log input variables subject to feature selection. 3389 data records from three South Pars gas field (Iran) wells include data from: uncorrected spectral gamma ray; potassium; thorium; uranium; photoelectric absorption factor; neutron porosity; bulk formation density; corrected gamma ray adjusted for uranium content; shear-wave velocity and compressional-wave velocity. Combinations of these well logs are tuned to provide predictions of the SMWW, measured in terms of subsurface pore and fracture pressures, using machine learning (ML) algorithms hybridized with optimizers. The ML algorithms assessed are multiple layer extreme learning machine (MELM) and least squares support vector machine (LSSVM), hybridized with genetic (GA) and particle swarm (PSO) optimizers. This new algorithm (MELM) incorporates special features that improve its prediction performance, speeds up its training, inhibits overfitting and involves less optimization in the model's construction. By combining MELM with PSO, its optimum control parameters are rapidly determined. The results reveal that the MELM-PSO combination provides the highest SMWW prediction accuracy of four models evaluated. For the testing subset MELM-PSO achieves high prediction performance of pore pressure (RMSE = 12.76 psi; R2 = 0.9948) and fracture pressure (RMSE = 15.71 psi; R2 = 0.9967). Furthermore, the model demonstrates that once trained with data from a few wells, it can be successfully applied to predict unseen data in other South Pars gas field wells. The findings of this study can provide a better understanding of how ML methods can be applied to accurately predict SMWW.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMarine and Petroleum Geology
463 _tVol. 142
_v[105772, 25 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _asafe mud weight window
610 1 _amultiple extreme learning machine
610 1 _ahybrid machine learning algorithms
610 1 _aoptimized well-log feature selection
701 1 _aBeheshtian
_bS.
_gSaeed
701 1 _aRajabi
_bM.
_gMeysam
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
701 1 _aWood
_bD. A.
_gDavid
701 1 _aGhorbani
_bH.
_gHamzeh
701 1 _aMohamadian
_bN.
_gNima
701 1 _aAhmadi
_bA. M.
_gAlvar Mehdi
701 1 _aAhmadi
_bA. M.
_gAlvar Mehdi
701 1 _aBand
_bSh. S.
_gShahab
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bОтделение нефтегазового дела
_h8084
_2stltpush
_3(RuTPU)RU\TPU\col\23546
801 2 _aRU
_b63413507
_c20220704
_gRCR
856 4 _uhttps://doi.org/10.1016/j.marpetgeo.2022.105772
942 _cCF