000 | 04077nlm1a2200469 4500 | ||
---|---|---|---|
001 | 668235 | ||
005 | 20231030042142.0 | ||
035 | _a(RuTPU)RU\TPU\network\39459 | ||
035 | _aRU\TPU\network\38447 | ||
090 | _a668235 | ||
100 | _a20220704a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aRobust computational approach to determine the safe mud weight window using well-log data from a large gas reservoir _fS. Beheshtian, M. Rajabi, Sh. Davoodi [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aA key parameter when drilling for gas and oil is to determine the safe mud weight window (SMWW) to ensure wellbore stability as part of a quantitative risk assessment (QRA). This study determines SMWW by predicting acceptable upper and lower limits of the bottom hole pressure window during over-balance drilling method. A novel machine learning method is developed to predict SMWW from ten well-log input variables subject to feature selection. 3389 data records from three South Pars gas field (Iran) wells include data from: uncorrected spectral gamma ray; potassium; thorium; uranium; photoelectric absorption factor; neutron porosity; bulk formation density; corrected gamma ray adjusted for uranium content; shear-wave velocity and compressional-wave velocity. Combinations of these well logs are tuned to provide predictions of the SMWW, measured in terms of subsurface pore and fracture pressures, using machine learning (ML) algorithms hybridized with optimizers. The ML algorithms assessed are multiple layer extreme learning machine (MELM) and least squares support vector machine (LSSVM), hybridized with genetic (GA) and particle swarm (PSO) optimizers. This new algorithm (MELM) incorporates special features that improve its prediction performance, speeds up its training, inhibits overfitting and involves less optimization in the model's construction. By combining MELM with PSO, its optimum control parameters are rapidly determined. The results reveal that the MELM-PSO combination provides the highest SMWW prediction accuracy of four models evaluated. For the testing subset MELM-PSO achieves high prediction performance of pore pressure (RMSE = 12.76 psi; R2 = 0.9948) and fracture pressure (RMSE = 15.71 psi; R2 = 0.9967). Furthermore, the model demonstrates that once trained with data from a few wells, it can be successfully applied to predict unseen data in other South Pars gas field wells. The findings of this study can provide a better understanding of how ML methods can be applied to accurately predict SMWW. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tMarine and Petroleum Geology | ||
463 |
_tVol. 142 _v[105772, 25 p.] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _asafe mud weight window | |
610 | 1 | _amultiple extreme learning machine | |
610 | 1 | _ahybrid machine learning algorithms | |
610 | 1 | _aoptimized well-log feature selection | |
701 | 1 |
_aBeheshtian _bS. _gSaeed |
|
701 | 1 |
_aRajabi _bM. _gMeysam |
|
701 | 1 |
_aDavoodi _bSh. _cspecialist in the field of petroleum engineering _cResearch Engineer of Tomsk Polytechnic University _f1990- _gShadfar _2stltpush _3(RuTPU)RU\TPU\pers\46542 |
|
701 | 1 |
_aWood _bD. A. _gDavid |
|
701 | 1 |
_aGhorbani _bH. _gHamzeh |
|
701 | 1 |
_aMohamadian _bN. _gNima |
|
701 | 1 |
_aAhmadi _bA. M. _gAlvar Mehdi |
|
701 | 1 |
_aAhmadi _bA. M. _gAlvar Mehdi |
|
701 | 1 |
_aBand _bSh. S. _gShahab |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа природных ресурсов _bОтделение нефтегазового дела _h8084 _2stltpush _3(RuTPU)RU\TPU\col\23546 |
801 | 2 |
_aRU _b63413507 _c20220704 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.marpetgeo.2022.105772 | |
942 | _cCF |