000 | 03396nlm1a2200493 4500 | ||
---|---|---|---|
001 | 668429 | ||
005 | 20231030042148.0 | ||
035 | _a(RuTPU)RU\TPU\network\39654 | ||
035 | _aRU\TPU\network\39653 | ||
090 | _a668429 | ||
100 | _a20221130a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aEffect of changing the neutron moderator in a thermal subcritical nuclear reactor _fH. R. Vega-Carrillo, M. G. Garcia-Reyna, C. A. Marquez-Mata [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aSubcritical thermal nuclear reactor is the combination of nuclear fuel, moderator and external neutron source. Nevertheless, the amount of neutrons increases through nuclear fissions in the 235U in the fuel, the absorption and leakage of neutrons maintain the subcriticality condition. There are several subcritical reactors with different features and purposes. The open tank subcritical reactor Nuclear Chicago model 9000 is the heterogeneous combination of natural uranium, in hexagonal lattice, and light water, acting as moderator and reflector of neutrons, that uses a239PuBe neutron source. Worldwide there are several of these reactors mainly used in education, where due to the contact with water the Al tubes have corrosion. A possible solution is to use polyethylene as moderator. Aiming to evaluate the effect of changing the moderator, in this work Monte Carlo methods were used to model the reactor with polyethylene and water as moderators increasing the fuel load. For each model were estimated the keff and the μ parameters, and for Case 10a model was calculated the power, the Ambient dose equivalent and the fluence, of neutrons and γ-rays at five sites outside the reactor. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tApplied Radiation and Isotopes | ||
463 |
_tVol. 188 _v[110395, 8 p.] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _asubcritical reactor | |
610 | 1 | _anuclear chicago 9000 | |
610 | 1 | _aMonte Carlo | |
610 | 1 | _aneutron fluence | |
610 | 1 | _aambient dose equivalent | |
610 | 1 | _aподкритические реакторы | |
610 | 1 | _aметод Монте-Карло | |
610 | 1 | _aфлюенсы | |
610 | 1 | _aамбиентный эквивалент дозы | |
701 | 1 |
_aVega-Carrillo _bH. R. _gHector Rene |
|
701 | 1 |
_aGarcia-Reyna _bM. G. _gMayra Guadalupe |
|
701 | 1 |
_aMarquez-Mata _bC. A. _gClaudia Angelica |
|
701 | 1 |
_aVazquez-Banuelos _bJ. _gJoel |
|
701 | 1 |
_aCampillo-Rivera _bG. E. _gGuillermo Eduardo |
|
701 | 1 |
_aBedenko _bS. V. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Candidate of physical and mathematical sciences _f1980- _gSergey Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\30831 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа ядерных технологий _bОтделение ядерно-топливного цикла _h7864 _2stltpush _3(RuTPU)RU\TPU\col\23554 |
801 | 2 |
_aRU _b63413507 _c20221130 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.apradiso.2022.110395 | |
942 | _cCF |