000 04160nlm1a2200481 4500
001 668485
005 20231030042150.0
035 _a(RuTPU)RU\TPU\network\39712
090 _a668485
100 _a20221214a2022 k y0engy50 ba
101 0 _aeng
102 _aCH
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aDeveloping Novel Gas Discharge Emitters of Acoustic Waves in Air for Nondestructive Testing of Materials
_fD. A. Derusova, V. O. Nekhoroshev, V. Yu. Shpilnoy, V. P. Vavilov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 25 tit.]
330 _aThis study was devoted to the development of novel devices and a methodology intended for generating ultrasonic waves in an air medium by using atmospheric pressure gas discharge. In the proposed electrode system, the discharge process was accompanied by the generation of acoustic waves on the emitter surface and, consequently, in the ambient air. The gas discharge emitter vibrations were analyzed by applying the technique of Scanning Laser Doppler Vibrometry (SLDV). It was shown that the magnitude of displacements matched the corresponding characteristics of classical piezoelectric and magnetostrictive transducers. The use of the Fast Fourier transform procedure supplied amplitude–frequency spectra of vibrations generated by the gas discharge emitter. The amplitude–frequency spectrum analysis showed that the proposed emitter was able to generate acoustic waves in the air with frequencies from 50 Hz to 100 kHz, and such a device can be used for the nondestructive testing (NDT) of materials. The results of the statistical analysis of vibration displacements in the repetitive pulsed mode were discussed. A non-stable characteristic of the vibration displacement of the emitter membrane was demonstrated. The parameters of such instability were associated with the features of gas discharge processes. In the experiments, the proposed gas discharge emitter was used in combination with SLDV for inspecting carbon-fiber-reinforced polymer composites. The experiments demonstrated the possibility of using an air-coupled gas discharge transmitter to generate acoustic waves in NDT applications.
461 _tSensors
463 _tVol. 22, iss. 23
_v[9056, 15 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _agas discharge
610 1 _alaser vibrometry
610 1 _aacoustic wave
610 1 _anondestructive testing
610 1 _acomposite
610 1 _aimpact damage
610 1 _aгазовый разряд
610 1 _aлазерная виброметрия
610 1 _aакустическая волна
610 1 _aнеразрушающий контроль
610 1 _aударное разрушение
701 1 _aDerusova
_bD. A.
_cSpecialist in biotechnical systems and technologies
_cSenior researcher of Tomsk Polytechnic University, Candidate of technical sciences
_f1989-
_gDariya Aleksandrovna
_2stltpush
_3(RuTPU)RU\TPU\pers\35097
701 1 _aNekhoroshev
_bV. O.
_gVitaly Olegovich
701 1 _aShpilnoy
_bV. Yu.
_cradiophysicist
_cJunior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences
_f1992-
_gViktor Yurjevich
_2stltpush
_3(RuTPU)RU\TPU\pers\45658
701 1 _aVavilov
_bV. P.
_cSpecialist in the field of dosimetry and methodology of nondestructive testing (NDT)
_cDoctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU)
_f1949-
_gVladimir Platonovich
_2stltpush
_3(RuTPU)RU\TPU\pers\32161
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа неразрушающего контроля и безопасности
_bЦентр промышленной томографии
_bНаучно-производственная лаборатория "Тепловой контроль"
_h7984
_2stltpush
_3(RuTPU)RU\TPU\col\23838
801 2 _aRU
_b63413507
_c20221214
_gRCR
856 4 _uhttps://doi.org/10.3390/s22239056
942 _cCF