000 | 03380nlm1a2200445 4500 | ||
---|---|---|---|
001 | 668546 | ||
005 | 20231030042152.0 | ||
035 | _a(RuTPU)RU\TPU\network\39773 | ||
035 | _aRU\TPU\network\39680 | ||
090 | _a668546 | ||
100 | _a20221227a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aThe necessary water discharge density to suppress fires in premises _fS. V. Chvanov, G. V. Kuznetsov, P. A. Strizhak, R. S. Volkov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 56 tit.] | ||
330 | _aThe paper presents experimental research findings for the temperature reduction of pyrolyzing and burning materials under typical indoor fire conditions when model fires are sprayed with varying water discharge density. The most typical combustible materials found in premises were considered. Two methods of extinguishing a model fire were investigated: continuous and cycling water mist discharge to the combustion zone. The velocities and average sizes of droplets in the aerosol flow were recorded of the experiments. Shadow Photography and Particle Image Velocimetry methods were used to record the aerosol parameters. An optical complex including a Quantel EverGreen 200 pulsed Nd:YAG laser and an ImperX IGV B2020M CCD camera was used. The findings revealed that a selective water supply system operation is required to suppress the combustion of different categories of materials. The values of the fire suppression performance index were calculated from the results of the experiments. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tPowder Technology | ||
463 |
_tVol. 408 _v[117707, 22 p.] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aindoor fire | |
610 | 1 | _areduction of combustion temperature | |
610 | 1 | _awater aerosol | |
610 | 1 | _awater discharge density | |
610 | 1 | _afire suppression performance index | |
610 | 1 | _acycling water mist discharge | |
701 | 1 |
_aChvanov _bS. V. _gSergey Vadimovich |
|
701 | 1 |
_aKuznetsov _bG. V. _cSpecialist in the field of heat power energy _cProfessor of Tomsk Polytechnic University, Doctor of Physical and Mathematical Sciences _f1949- _gGeny Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\31891 |
|
701 | 1 |
_aStrizhak _bP. A. _cSpecialist in the field of heat power energy _cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU) _f1985- _gPavel Alexandrovich _2stltpush _3(RuTPU)RU\TPU\pers\30871 |
|
701 | 1 |
_aVolkov _bR. S. _cspecialist in the field of power engineering _cAssociate Professor of the Tomsk Polytechnic University, candidate of technical Sciences _f1987- _gRoman Sergeevich _2stltpush _3(RuTPU)RU\TPU\pers\33926 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20221227 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.powtec.2022.117707 | |
942 | _cCF |