000 | 04458nlm1a2200481 4500 | ||
---|---|---|---|
001 | 668548 | ||
005 | 20231030042152.0 | ||
035 | _a(RuTPU)RU\TPU\network\39775 | ||
035 | _aRU\TPU\network\35972 | ||
090 | _a668548 | ||
100 | _a20221227a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGB | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCharacterising Hidden Defects in GFRP/CFRP Composites by using Laser Vibrometry and Active IR Thermography _fD. A. Derusova, V. P. Vavilov, V. Yu. Shpilnoy [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 28 tit.] | ||
330 | _aThis paper describes the use of laser vibrometry and thermal non-destructive testing for detecting defects in GFRP composite by applying a single test procedure. The laser vibrometry involves the averaging of vibration amplitudes over an entire frequency spectrum accompanied by the frequency-phase analysis. Such procedure may lead to suppression of low signals, produced by smaller and deeper defects, by higher signals conditioned by larger and shallower defects. The fusion of results obtained with both laser vibrometry and thermal NDT was used to enhance defect detectability. The corresponding experimental techniques were applied to detecting four types of defects (air gaps, foam, blank grooves, resin) in GFRP composite, as well as evaluating defect size and depth. Also, laser vibrometry was used to characterise barely visible impact damage in CFRP composite, and test data was compared with C-scan ultrasonic inspection results. It has been shown that the results supplied by three inspection techniques have been reasonably consistent in characterisation of defect lateral area and depth. When analysing the complex structure of impact damage in composites, the detection of both shallow and deep defects can also be enhanced by performing fusion of test results supplied by laser vibrometry and active thermal NDT. | ||
461 | _tNondestructive Testing and Evaluation | ||
463 |
_tVol. 37, iss. 6 _v[P. 776-794] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _alaser vibrometry | |
610 | 1 | _athermal NDT | |
610 | 1 | _aultrasonic stimulation | |
610 | 1 | _ainfrared thermography | |
610 | 1 | _acomposite | |
610 | 1 | _adefect characterisation | |
701 | 1 |
_aDerusova _bD. A. _cSpecialist in biotechnical systems and technologies _cSenior researcher of Tomsk Polytechnic University, Candidate of technical sciences _f1989- _gDariya Aleksandrovna _2stltpush _3(RuTPU)RU\TPU\pers\35097 |
|
701 | 1 |
_aVavilov _bV. P. _cSpecialist in the field of dosimetry and methodology of nondestructive testing (NDT) _cDoctor of technical sciences (DSc), Professor of Tomsk Polytechnic University (TPU) _f1949- _gVladimir Platonovich _2stltpush _3(RuTPU)RU\TPU\pers\32161 |
|
701 | 1 |
_aShpilnoy _bV. Yu. _cradiophysicist _cJunior Researcher, Tomsk Polytechnic University, Candidate of Technical Sciences _f1992- _gViktor Yurjevich _2stltpush _3(RuTPU)RU\TPU\pers\45658 |
|
701 | 1 |
_aSiddiqui _bA. O. _gAhmad |
|
701 | 1 |
_aPrasad _bY. L. V. D. |
|
701 | 1 |
_aDruzhinin _bN. V. _gNikolay Vladimirovich |
|
701 | 1 |
_aZhvyrblya _bV. Yu. _cspecialist in the field of non-destructive testing _cengineer of Tomsk Polytechnic University _f1992- _gVadim Yurievich _2stltpush _3(RuTPU)RU\TPU\pers\36913 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа неразрушающего контроля и безопасности _bЦентр промышленной томографии _bМеждународная научно-образовательная лаборатория неразрушающего контроля _h6776 _2stltpush _3(RuTPU)RU\TPU\col\19961 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа неразрушающего контроля и безопасности _bЦентр промышленной томографии _bНаучно-производственная лаборатория "Тепловой контроль" _h7984 _2stltpush _3(RuTPU)RU\TPU\col\23838 |
801 | 2 |
_aRU _b63413507 _c20221227 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1080/10589759.2022.2063285 | |
942 | _cCF |