000 02432nlm1a2200433 4500
001 668596
005 20231030042153.0
035 _a(RuTPU)RU\TPU\network\39833
035 _aRU\TPU\network\37160
090 _a668596
100 _a20230110a2022 k y0engy50 ba
101 0 _aeng
135 _aarcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aGeneralised point vortices on a plane
_fA. V. Galajinsky
203 _aText
_celectronic
300 _aTitle screen
320 _a[References.: 17 tit.]
330 _aA three-vortex system on a plane is known to be minimally superintegrable in the Liouville sense. In this work, integrable generalisations of the three-vortex planar model, which involve root vectors of simple Lie algebras, are proposed. It is shown that a generalised system, which is governed by a positive definite Hamiltonian, admits a natural integrable extension by spin degrees of freedom. It is emphasised that the n-vortex planar model and plenty of its generalisations enjoy the nonrelativistic scale invariance, which gives room for possible holographic applications.
461 _tPhysics Letters B
463 _tVol. 829
_v[137119, 5 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _apoint vortices
610 1 _aintegrable systems
610 1 _ascale symmetry
610 1 _asupersymmetry
610 1 _aточечные вихри
610 1 _aинтегрируемые системы
610 1 _aмасштабность
610 1 _aсимметрия
610 1 _aсуперсимметрия
700 1 _aGalajinsky
_bA. V.
_cDoctor of Physical and Mathematical Sciences, Tomsk Polytechnic University (TPU), Department of Higher Mathematics and Mathematical Physics of the Institute of Physics and Technology (HMMPD IPT)
_cProfessor of the TPU
_f1971-
_gAnton Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\27878
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20230331
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/74934
856 4 _uhttps://doi.org/10.1016/j.physletb.2022.137119
942 _cCF