000 02203nlm1a2200409 4500
001 668605
005 20231030042154.0
035 _a(RuTPU)RU\TPU\network\39842
035 _aRU\TPU\network\39775
090 _a668605
100 _a20230110a2022 k y0engy50 ba
101 0 _aeng
102 _aGB
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aQuasiconformal mappings and Neumann eigenvalues of divergent elliptic operators
_fV. M. Goldshteyn, V. A. Pchelintsev, A. D. Ukhlov
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 37 tit.]
330 _aWe study spectral properties of divergence form elliptic operators −div[A(z)∇f(z)]−div[A(z)∇f(z)] with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces.
461 _tComplex Variables and Elliptic Equations
463 _tVol. 67, iss. 9
_v[P. 2281-2302]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aElliptic equations
610 1 _aSobolev spaces
610 1 _aquasiconformal mappings
610 1 _aэллиптические уравнения
610 1 _aквазиконформные отображения
700 1 _aGoldshteyn
_bV. M.
_gVladimir Mikhaylovich
701 1 _aPchelintsev
_bV. A.
_cmathematician
_cSenior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences
_f1988-
_gValery Anatoljevich
_2stltpush
_3(RuTPU)RU\TPU\pers\35715
701 1 _aUkhlov
_bA. D.
_gAleksandr Dadar-oolovich
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bШкола базовой инженерной подготовки
_bОтделение математики и информатики
_h8031
_2stltpush
_3(RuTPU)RU\TPU\col\23555
801 2 _aRU
_b63413507
_c20230110
_gRCR
856 4 _uhttps://doi.org/10.1080/17476933.2021.1921752
942 _cCF