000 | 02203nlm1a2200409 4500 | ||
---|---|---|---|
001 | 668605 | ||
005 | 20231030042154.0 | ||
035 | _a(RuTPU)RU\TPU\network\39842 | ||
035 | _aRU\TPU\network\39775 | ||
090 | _a668605 | ||
100 | _a20230110a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aGB | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aQuasiconformal mappings and Neumann eigenvalues of divergent elliptic operators _fV. M. Goldshteyn, V. A. Pchelintsev, A. D. Ukhlov |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 37 tit.] | ||
330 | _aWe study spectral properties of divergence form elliptic operators −div[A(z)∇f(z)]−div[A(z)∇f(z)] with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces. | ||
461 | _tComplex Variables and Elliptic Equations | ||
463 |
_tVol. 67, iss. 9 _v[P. 2281-2302] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aElliptic equations | |
610 | 1 | _aSobolev spaces | |
610 | 1 | _aquasiconformal mappings | |
610 | 1 | _aэллиптические уравнения | |
610 | 1 | _aквазиконформные отображения | |
700 | 1 |
_aGoldshteyn _bV. M. _gVladimir Mikhaylovich |
|
701 | 1 |
_aPchelintsev _bV. A. _cmathematician _cSenior Lecturer of Tomsk Polytechnic University, candidate of physico-mathematical Sciences _f1988- _gValery Anatoljevich _2stltpush _3(RuTPU)RU\TPU\pers\35715 |
|
701 | 1 |
_aUkhlov _bA. D. _gAleksandr Dadar-oolovich |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bШкола базовой инженерной подготовки _bОтделение математики и информатики _h8031 _2stltpush _3(RuTPU)RU\TPU\col\23555 |
801 | 2 |
_aRU _b63413507 _c20230110 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1080/17476933.2021.1921752 | |
942 | _cCF |