000 03594nlm1a2200481 4500
001 668625
005 20231030042154.0
035 _a(RuTPU)RU\TPU\network\39862
035 _aRU\TPU\network\38737
090 _a668625
100 _a20230112a2022 k y0engy50 ba
101 1 _aeng
102 _aNL
135 _aarcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aQuantitative detection of a1-acid glycoprotein (AGP) level in blood plasma using SERS and CNN transfer learning approach
_fM. Erzina, A. Trelin, O. A. Guselnikova [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 48 tit.]
330 _aSurface-enhanced Raman spectroscopy (SERS) is a highly sensitive tool in medical diagnostics and bioanalysis fields, aimed at the qualitative detection of relevant biomolecules. However, quantitative SERS analysis of complex (bio)samples is a more challenging and, in many cases, almost impossible task, requiring functional SERS substrates or advanced spectral data analysis. In this work, we propose the combination of a functional SERS substrate, capable of trapping target biomolecules, with CNN transfer learning for quantitative detection of the relevant a1-acid glycoprotein (AGP, also known as orosomucoid) in human serum. As a SERS substrate, the plasmonic gold grating was functionalized with boronic acid moieties to entrap target AGP. The functionality of the substrate was tested on two model solutions: a solution containing saccharides as competing molecules and human serum with added AGP, which is close to real samples. The convolution neural network (CNN) was previously trained on a huge number of (bio)samples. Then CNN transfer learning was used to quantify AGP concentration in model samples, as well as in human serum. Developed strategy is able to identify the alarming increase of AGP concentration in an express and medically decentralized way, on short time and under lack of spectral data. Generally, the proposed combination of SERS and machine transfer learning could be expanded to a range of alternative cases, where the collection of real samples is restricted and can be substituted by the measurements of similar model systems, without loss of analysis reliability.
338 _bРоссийский научный фонд
_d19-73-00238
461 _tSensors and Actuators B: Chemical
463 _tVol. 367
_v[132057, 8 p.]
_d2022
610 1 _aтруды учёных ТПУ
610 1 _aэлектронный ресурс
610 1 _aSERS
610 1 _afunctional surface
610 1 _abiomolecules entrapping
610 1 _aa1-acid glycoprotein
610 1 _aserum
610 1 _aCNN transfer learning
701 1 _aErzina
_bM.
_gMariia
701 1 _aTrelin
_bA.
701 1 _aGuselnikova
_bO. A.
_cchemist
_cengineer of Tomsk Polytechnic University
_f1992-
_gOlga Andreevna
_2stltpush
_3(RuTPU)RU\TPU\pers\34478
701 1 _aSkvortsova
_bA.
701 1 _aStrnadova
_bK.
701 1 _aSvorcik
_bV.
701 1 _aLyutakov
_bO.
_cchemist-technologist
_cAssociate Scientist of Tomsk Polytechnic University
_f1982-
_gOleksy
_2stltpush
_3(RuTPU)RU\TPU\pers\36875
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
801 2 _aRU
_b63413507
_c20230112
_gRCR
856 4 _uhttps://doi.org/10.1016/j.snb.2022.132057
942 _cCF