000 04065nlm1a2200577 4500
001 668645
005 20231030042155.0
035 _a(RuTPU)RU\TPU\network\39882
035 _aRU\TPU\network\37272
090 _a668645
100 _a20230116a2022 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aAn efficient multi-thresholding based COVID-19 CT images segmentation approach using an improved equilibrium optimizer
_fH. H. Essam, E. Bahaa, D. A. Oliva Navarro [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 80 tit.]
330 _aOptimization is the process of searching for the optimal (best-so-far) solution among a wide range of solutions. Besides, in the last two decades, a family of algorithms known as metaheuristic algorithms (MHs) has been widely used. MHs have attracted researchers' interest due to their efficiency, easy implementation, and understanding. The equilibrium optimizer (EO) is a recent MH that has been used to tackle several real world problems. Despite the robustness of the EO algorithm, it suffers of the unbalance between the exploration and exploitation phases, this situation causes that the search process be trapped in local optimal values. In this study, an improved version of the EO that combines the standard operators with the dimension learning hunting (DLH) is introduced. The proposed method called I-EO is tested over the CEC'2020 benchmark functions. Quantitative and qualitative results confirmed the robustness and superiority of the proposed algorithm compared to a set of well-known optimization methods. Besides, I-EO is proposed to tackle a real-world application; the multi-level thresholding segmentation for a set of CT images of COVID-19 by maximizing the fuzzy entropy. The segmentation results show the excellent performance in all experiments and confirmed that the proposed I-EO could be an efficient tool for image segmentation. The different elements of the CT are properly segmented by the I-EO based approach. Moreover, the statistical analysis, quality metrics, comparisons and non-parametric tests validates the performance of the I-EO to segment CT images of COVID-19.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tBiomedical Signal Processing and Control
463 _tVol. 73
_v[103401, 26 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ametaheuristics
610 1 _aEquilibrium Optimizer (EO)
610 1 _aDimension learning hunting (DLH)
610 1 _amulti-level thresholding
610 1 _aimage segmentation
610 1 _aCOVID-19 CT images
610 1 _aметаэвристика
610 1 _aоптимизаторы
610 1 _aравновесие
610 1 _aпороговые значения
610 1 _aсегментация
610 1 _aизображения
610 1 _aснимки
610 1 _aкомпьютерная томография
701 1 _aEssam
_bH. H.
_gHoussein
701 1 _aBahaa
_bE.
_gEl-din Helmy
701 1 _aOliva Navarro
_bD. A.
_cspecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDiego Alberto
_2stltpush
_3(RuTPU)RU\TPU\pers\37366
701 1 _aPradeep
_bJ.
_gJangir
701 1 _aPremkumar
_bM.
701 1 _aAhmed
_bA. E.
_gElngar
701 1 _aHassan
_bSh.
_gShabana
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20230116
_gRCR
856 4 _uhttps://doi.org/10.1016/j.bspc.2021.103401
942 _cCF