000 03291nlm1a2200457 4500
001 668646
005 20231030042155.0
035 _a(RuTPU)RU\TPU\network\39883
035 _aRU\TPU\network\39466
090 _a668646
100 _a20230116a2022 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
182 0 _ab
200 1 _aEnhancing the contrast of the grey-scale image based on meta-heuristic optimization algorithm
_fH. Kh. Ali, A. Shameem, K. Suman [et al.]
203 _celectronic
300 _aTitle screen
330 _aImage contrast enhancement (ICE) is an important step in image processing and analysis as the quality of an image plays a pivotal role in human understanding. Moreover, contrast is considered a key aspect for the assessment of picture quality. Incomplete beta function (IBF) is one of the widely used transformations and histogram equalization (HE) is also one of the most popular methods used for this task. However, HE has some limitations as the local contrast of an image cannot be uniformly enhanced. In the present work, a contrast enhancement method is proposed for grey-scale images based on a recent socio-inspired meta-heuristic called political optimizer (PO). The PO algorithm follows the multi-phased process of politics. The exploitative capability of PO is improved by combining it with the adaptive β�-hill climbing (Aβ�HC) which is regarded as one of the best local search techniques. The hybridization of these two algorithms is then used to find the optimal values of pixels which can intensify the hidden characteristic of the low-contrast images. The proposed algorithm is tested over a publicly available Kodak image dataset along with some standard images and evaluated in terms of standard metrics. The experimental results demonstrate that the proposed method can successfully outperform many existing methods considered here for comparison.
461 _tSoft Computing
463 _tVol. 26, iss. 13
_v[P. 6293–6315]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ameta-heuristic
610 1 _aimage contrast enhancement
610 1 _apolitical optimizer
610 1 _aadaptive β-hill climbing
610 1 _aoptimization
610 1 _aalgorithm
610 1 _aметаэвристика
610 1 _aконтрастность
610 1 _aизображения
701 1 _aAli
_bH. Kh.
_gHussain Khan
701 1 _aShameem
_bA.
_gAhmed
701 1 _aSuman
_bK.
_gKumar
701 1 _aSeyedali
_bM.
_gMirjalili
701 1 _aOliva Navarro
_bD. A.
_cspecialist in the field of informatics and computer technology
_cProfessor of Tomsk Polytechnic University
_f1983-
_gDiego Alberto
_2stltpush
_3(RuTPU)RU\TPU\pers\37366
701 1 _aRam
_bS.
_gSarkar
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа информационных технологий и робототехники
_bОтделение информационных технологий
_h7951
_2stltpush
_3(RuTPU)RU\TPU\col\23515
801 2 _aRU
_b63413507
_c20230116
_gRCR
856 4 _uhttps://doi.org/10.1007/s00500-022-07033-8
942 _cCF