000 | 03654nlm1a2200505 4500 | ||
---|---|---|---|
001 | 668841 | ||
005 | 20231030042202.0 | ||
035 | _a(RuTPU)RU\TPU\network\40078 | ||
035 | _aRU\TPU\network\27880 | ||
090 | _a668841 | ||
100 | _a20230127a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aNL | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aFully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments _fМ. Bondi, A. Celentano, R. R. Dusaev [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 17 tit.] | ||
330 | _aWe present the package for the simulation of DM (Dark Matter) particles in fixed target experiments. The most convenient way of this simulation (and the only possible way in the case of beam-dump) is to simulate it in the framework of the Monte-Carlo program performing the particle tracing in the experimental setup. The Geant4 toolkit framework was chosen as the most popular and versatile solution nowadays. Specifically, the package includes the codes for the simulation of the processes of DM particles production via electron and muon bremsstrahlung off nuclei, resonant in-flight positron annihilation on atomic electrons and gamma to ALP (axion-like particles) conversion on nuclei. Four types of DM mediator particles are considered: vector, scalar, pseudoscalar and axial vector. The total cross sections of bremsstrahlung processes are calculated numerically at exact tree level (ETL). The code handles both the case of invisible DM decay and of visible decay into �+�− (�+�− for �′, γγ for ALP). The proposed extension implements native Geant4 application programming interfaces (API) designed for these needs and can be unobtrusively embedded into the existing applications. As an example of its usage, we discuss the results obtained from the simulation of a typical active beam-dump experiment. We consider 5×1012 100 GeV electrons impinging on a lead/plastic heterogeneous calorimeter playing a role of an active thick target. The expected sensitivity of the experiment to the four types of DM mediator particles mentioned above is then derived. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tComputer Physics Communications | ||
463 |
_tVol. 269 _v[108129, 6 p.] _d2021 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _adark matter | |
610 | 1 | _ageant4 | |
610 | 1 | _afixed target | |
610 | 1 | _asimulation | |
610 | 1 | _aтемная материя | |
610 | 1 | _aцели | |
610 | 1 | _aмоделирование | |
701 | 1 |
_aBondi _bМ. _gMariangela |
|
701 | 1 |
_aCelentano _bA. _gAndrea |
|
701 | 1 |
_aDusaev _bR. R. _cspecialist in the field of nuclear physics _cEngineer of Tomsk Polytechnic University _f1988- _gRenat Ramilyevich _2stltpush _3(RuTPU)RU\TPU\pers\30972 |
|
701 | 1 |
_aKirpichnikov _bD. V. _gDmitry |
|
701 | 1 |
_aKirsanov _bM. M. _gMikhail Mikhaylovich |
|
701 | 1 |
_aKrasnikov _bN. V. _gNikolay Valerjevich |
|
701 | 1 |
_aMarsicano _bL. _gLuca |
|
701 | 1 |
_aShchukin _bD. G. _gDmitry |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа физики высокоэнергетических процессов _c(2017- ) _h8118 _2stltpush _3(RuTPU)RU\TPU\col\23551 |
801 | 2 |
_aRU _b63413507 _c20230127 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1016/j.cpc.2021.108129 | |
942 | _cCF |