000 03654nlm1a2200505 4500
001 668841
005 20231030042202.0
035 _a(RuTPU)RU\TPU\network\40078
035 _aRU\TPU\network\27880
090 _a668841
100 _a20230127a2021 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aFully Geant4 compatible package for the simulation of Dark Matter in fixed target experiments
_fМ. Bondi, A. Celentano, R. R. Dusaev [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 17 tit.]
330 _aWe present the package for the simulation of DM (Dark Matter) particles in fixed target experiments. The most convenient way of this simulation (and the only possible way in the case of beam-dump) is to simulate it in the framework of the Monte-Carlo program performing the particle tracing in the experimental setup. The Geant4 toolkit framework was chosen as the most popular and versatile solution nowadays. Specifically, the package includes the codes for the simulation of the processes of DM particles production via electron and muon bremsstrahlung off nuclei, resonant in-flight positron annihilation on atomic electrons and gamma to ALP (axion-like particles) conversion on nuclei. Four types of DM mediator particles are considered: vector, scalar, pseudoscalar and axial vector. The total cross sections of bremsstrahlung processes are calculated numerically at exact tree level (ETL). The code handles both the case of invisible DM decay and of visible decay into �+�− (�+�− for �′, γγ for ALP). The proposed extension implements native Geant4 application programming interfaces (API) designed for these needs and can be unobtrusively embedded into the existing applications. As an example of its usage, we discuss the results obtained from the simulation of a typical active beam-dump experiment. We consider 5×1012 100 GeV electrons impinging on a lead/plastic heterogeneous calorimeter playing a role of an active thick target. The expected sensitivity of the experiment to the four types of DM mediator particles mentioned above is then derived.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tComputer Physics Communications
463 _tVol. 269
_v[108129, 6 p.]
_d2021
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _adark matter
610 1 _ageant4
610 1 _afixed target
610 1 _asimulation
610 1 _aтемная материя
610 1 _aцели
610 1 _aмоделирование
701 1 _aBondi
_bМ.
_gMariangela
701 1 _aCelentano
_bA.
_gAndrea
701 1 _aDusaev
_bR. R.
_cspecialist in the field of nuclear physics
_cEngineer of Tomsk Polytechnic University
_f1988-
_gRenat Ramilyevich
_2stltpush
_3(RuTPU)RU\TPU\pers\30972
701 1 _aKirpichnikov
_bD. V.
_gDmitry
701 1 _aKirsanov
_bM. M.
_gMikhail Mikhaylovich
701 1 _aKrasnikov
_bN. V.
_gNikolay Valerjevich
701 1 _aMarsicano
_bL.
_gLuca
701 1 _aShchukin
_bD. G.
_gDmitry
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа физики высокоэнергетических процессов
_c(2017- )
_h8118
_2stltpush
_3(RuTPU)RU\TPU\col\23551
801 2 _aRU
_b63413507
_c20230127
_gRCR
856 4 _uhttps://doi.org/10.1016/j.cpc.2021.108129
942 _cCF