000 | 04060nlm1a2200385 4500 | ||
---|---|---|---|
001 | 668953 | ||
005 | 20231030042206.0 | ||
035 | _a(RuTPU)RU\TPU\network\40190 | ||
035 | _aRU\TPU\network\37403 | ||
090 | _a668953 | ||
100 | _a20230203a2021 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aUS | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aUnsteady convective flow of a preheated water-in-oil emulsion droplet impinging on a heated wall _fM. V. Piskunov, N. A. Khomutov, A. E. Semyonova [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 59 tit.] | ||
330 | _aThis work proposes a mechanism of deformation of an emulsion droplet upon collision with a wall, considering the vortex motion of a liquid inside the droplet. This motion leads to an increase in dissipative energy losses, affects spreading, corona splashing, and droplet relaxation at different liquid and wall temperatures, ranging from 20 °C to 80 °C, and influences the equilibrium shape of the drop during the liquid relaxation. For We = 100–900 and Re = 100–4000, a physical model is presented for the maximum spreading diameter of the emulsion droplet; it takes into account the heating of the boundary viscous layer and the development of temperature gradients along the droplet height, convective mixing of the liquid layers, and translational and vortex flow motion along the radius and height of the droplet. The process of corona splashing of the emulsion droplet has been studied, and the influence of the viscosity gradient due to the intermittent near-wall water film formation on the dynamics of the “corona” has been revealed. These differences led to the formation of an air gap, which in the case of an emulsion drop caused the development of a corona at lower We compared to homogeneous liquids. The duration of the liquid relaxation before capillary wetting was affected by the potential barrier of the contact line of the droplet, which depended on the vortex component of the velocity field as well as on the temperatures of the interacting media. Altering the initial thermal boundary conditions changed the relaxation time up to 60%. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tPhysics of Fluids | ||
463 |
_tVol. 34, iss. 9 _v[093311, 20 p.] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
701 | 1 |
_aPiskunov _bM. V. _cspecialist in the field of thermal engineering _cengineer of Tomsk Polytechnic University _f1991- _gMaksim Vladimirovich _2stltpush _3(RuTPU)RU\TPU\pers\34151 |
|
701 | 1 |
_aKhomutov _bN. A. _cspecialist in the field of thermal power engineering and heat engineering _cresearch engineer at Tomsk Polytechnic University _f1997- _gNikita Andreevich _2stltpush _3(RuTPU)RU\TPU\pers\47495 |
|
701 | 1 |
_aSemyonova _bA. E. _cspecialist in the field of thermal power engineering and heat engineering _cresearch engineer at Tomsk Polytechnic University _f1998- _gAleksandra Evgenjevna _2stltpush _3(RuTPU)RU\TPU\pers\47497 |
|
701 | 1 |
_aAshikhmin _bA. E. _cSpecialist in the field of thermal power engineering and heat engineering _cResearch Engineer of Tomsk Polytechnic University _f1998- _gAlexander Evgenjevich _2stltpush _3(RuTPU)RU\TPU\pers\47569 |
|
701 | 1 |
_aMisyura _bS. Ya. _cspecialist in the field of power engineering _cleading researcher of Tomsk Polytechnic University, candidate of technical sciences _f1964- _gSergey Yakovlevich _2stltpush _3(RuTPU)RU\TPU\pers\39641 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа энергетики _bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова) _h8025 _2stltpush _3(RuTPU)RU\TPU\col\23504 |
801 | 2 |
_aRU _b63413507 _c20230517 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1063/5.0107628 | |
942 | _cCF |