000 04060nlm1a2200385 4500
001 668953
005 20231030042206.0
035 _a(RuTPU)RU\TPU\network\40190
035 _aRU\TPU\network\37403
090 _a668953
100 _a20230203a2021 k y0engy50 ba
101 0 _aeng
102 _aUS
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aUnsteady convective flow of a preheated water-in-oil emulsion droplet impinging on a heated wall
_fM. V. Piskunov, N. A. Khomutov, A. E. Semyonova [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 59 tit.]
330 _aThis work proposes a mechanism of deformation of an emulsion droplet upon collision with a wall, considering the vortex motion of a liquid inside the droplet. This motion leads to an increase in dissipative energy losses, affects spreading, corona splashing, and droplet relaxation at different liquid and wall temperatures, ranging from 20 °C to 80 °C, and influences the equilibrium shape of the drop during the liquid relaxation. For We = 100–900 and Re = 100–4000, a physical model is presented for the maximum spreading diameter of the emulsion droplet; it takes into account the heating of the boundary viscous layer and the development of temperature gradients along the droplet height, convective mixing of the liquid layers, and translational and vortex flow motion along the radius and height of the droplet. The process of corona splashing of the emulsion droplet has been studied, and the influence of the viscosity gradient due to the intermittent near-wall water film formation on the dynamics of the “corona” has been revealed. These differences led to the formation of an air gap, which in the case of an emulsion drop caused the development of a corona at lower We compared to homogeneous liquids. The duration of the liquid relaxation before capillary wetting was affected by the potential barrier of the contact line of the droplet, which depended on the vortex component of the velocity field as well as on the temperatures of the interacting media. Altering the initial thermal boundary conditions changed the relaxation time up to 60%.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tPhysics of Fluids
463 _tVol. 34, iss. 9
_v[093311, 20 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
701 1 _aPiskunov
_bM. V.
_cspecialist in the field of thermal engineering
_cengineer of Tomsk Polytechnic University
_f1991-
_gMaksim Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34151
701 1 _aKhomutov
_bN. A.
_cspecialist in the field of thermal power engineering and heat engineering
_cresearch engineer at Tomsk Polytechnic University
_f1997-
_gNikita Andreevich
_2stltpush
_3(RuTPU)RU\TPU\pers\47495
701 1 _aSemyonova
_bA. E.
_cspecialist in the field of thermal power engineering and heat engineering
_cresearch engineer at Tomsk Polytechnic University
_f1998-
_gAleksandra Evgenjevna
_2stltpush
_3(RuTPU)RU\TPU\pers\47497
701 1 _aAshikhmin
_bA. E.
_cSpecialist in the field of thermal power engineering and heat engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1998-
_gAlexander Evgenjevich
_2stltpush
_3(RuTPU)RU\TPU\pers\47569
701 1 _aMisyura
_bS. Ya.
_cspecialist in the field of power engineering
_cleading researcher of Tomsk Polytechnic University, candidate of technical sciences
_f1964-
_gSergey Yakovlevich
_2stltpush
_3(RuTPU)RU\TPU\pers\39641
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
801 2 _aRU
_b63413507
_c20230517
_gRCR
856 4 _uhttps://doi.org/10.1063/5.0107628
942 _cCF