000 04209nlm1a2200505 4500
001 669061
005 20231030042209.0
035 _a(RuTPU)RU\TPU\network\40298
035 _aRU\TPU\network\39659
090 _a669061
100 _a20230209a2022 k y0engy50 ba
101 0 _aeng
102 _aCH
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aMicrostructure and Hydrogen Permeability of Nb-Ni-Ti-Zr-Co High Entropy Alloys
_fD. G. Krotkevich, E. B. Kashkarov, M. Koptsev [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 31 tit.]
330 _aHydrogen separation membranes are one of the most promising technologies for hydrogen purification. The development of high-entropy alloys (HEAs) for hydrogen separation membranes is driven by a “cocktail effect” of elements with different hydrogen affinities to prevent hydride formation and retain high permeability due to the single-phase BCC structure. In this paper, equimolar and non-equimolar Nb-Ni-Ti-Zr-Co high entropy alloys were fabricated by arc melting. The microstructure and phase composition of the alloys were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The hydrogen permeation experiments were performed at 300–500 °C and a hydrogen pressure of 4 bar. In order to estimate the effect of composition and lattice structure on hydrogen location and diffusivity in Nb-Ni-Ti-Zr-Co alloy, ab initio calculations of hydrogen binding energy were performed using virtual crystal approximation. It was found that Nb-enriched and near equimolar BCC phases were formed in Nb20Ni20Ti20Zr20Co20 HEA while Nb-enriched BCC and B2-Ni(Ti, Zr) were formed in Nb40Ni25Ti18Zr12Co5 alloy. Hydrogen permeability tests showed that Nb20Ni20Ti20Zr20Co20 HEA shows lower activation energy and higher permeability at lower temperatures as well as higher resistance to hydrogen embrittlement compared to Nb40Ni25Ti18Zr12Co5 alloy. The effect of composition, microstructure and hydrogen binding energies on permeability of the fabricated alloys was discussed.
461 _tMembranes
463 _tVol. 12, iss. 11
_v[1157, 9 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _ahigh-entropy alloys
610 1 _amembranes
610 1 _amicrostructure
610 1 _aab initio calculation
610 1 _ahydrogen permeability
610 1 _aвысокоэнтропийные сплавы
610 1 _aмембраны
610 1 _aмикроструктура
610 1 _aводородопроницаемость
701 1 _aKrotkevich
_bD. G.
_cphysicist
_cengineer of Tomsk Polytechnic University
_f1990-
_gDmitry Georgievich
_2stltpush
_3(RuTPU)RU\TPU\pers\46798
701 1 _aKashkarov
_bE. B.
_cPhysicist
_cAssociate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences
_f1991-
_gEgor Borisovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34949
701 1 _aKoptsev
_bM.
_cphysicist
_cEngineer of Tomsk Polytechnic University
_f1994-
_gMaksim
_2stltpush
_3(RuTPU)RU\TPU\pers\47505
701 1 _aSvyatkin
_bL. A.
_cphysicist
_cAssociate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences
_f1988-
_gLeonid Aleksandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\34216
701 1 _aTravitsky (Travitzky)
_bN.
_cspecialist in the field of material science
_cProfessor of Tomsk Polytechnic University
_f1951-
_gNakhum
_2stltpush
_3(RuTPU)RU\TPU\pers\42461
701 1 _aLider
_bA. M.
_cPhysicist
_cProfessor of Tomsk Polytechnic University, Doctor of Technical Sciences
_f1976-
_gAndrey Markovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30400
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа ядерных технологий
_bОтделение экспериментальной физики
_h7865
_2stltpush
_3(RuTPU)RU\TPU\col\23549
801 2 _aRU
_b63413507
_c20230306
_gRCR
856 4 _uhttp://earchive.tpu.ru/handle/11683/74795
856 4 _uhttps://doi.org/10.3390/membranes12111157
942 _cCF