000 | 04209nlm1a2200505 4500 | ||
---|---|---|---|
001 | 669061 | ||
005 | 20231030042209.0 | ||
035 | _a(RuTPU)RU\TPU\network\40298 | ||
035 | _aRU\TPU\network\39659 | ||
090 | _a669061 | ||
100 | _a20230209a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
102 | _aCH | ||
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aMicrostructure and Hydrogen Permeability of Nb-Ni-Ti-Zr-Co High Entropy Alloys _fD. G. Krotkevich, E. B. Kashkarov, M. Koptsev [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
320 | _a[References: 31 tit.] | ||
330 | _aHydrogen separation membranes are one of the most promising technologies for hydrogen purification. The development of high-entropy alloys (HEAs) for hydrogen separation membranes is driven by a “cocktail effect” of elements with different hydrogen affinities to prevent hydride formation and retain high permeability due to the single-phase BCC structure. In this paper, equimolar and non-equimolar Nb-Ni-Ti-Zr-Co high entropy alloys were fabricated by arc melting. The microstructure and phase composition of the alloys were analyzed by scanning electron microscopy and X-ray diffraction, respectively. The hydrogen permeation experiments were performed at 300–500 °C and a hydrogen pressure of 4 bar. In order to estimate the effect of composition and lattice structure on hydrogen location and diffusivity in Nb-Ni-Ti-Zr-Co alloy, ab initio calculations of hydrogen binding energy were performed using virtual crystal approximation. It was found that Nb-enriched and near equimolar BCC phases were formed in Nb20Ni20Ti20Zr20Co20 HEA while Nb-enriched BCC and B2-Ni(Ti, Zr) were formed in Nb40Ni25Ti18Zr12Co5 alloy. Hydrogen permeability tests showed that Nb20Ni20Ti20Zr20Co20 HEA shows lower activation energy and higher permeability at lower temperatures as well as higher resistance to hydrogen embrittlement compared to Nb40Ni25Ti18Zr12Co5 alloy. The effect of composition, microstructure and hydrogen binding energies on permeability of the fabricated alloys was discussed. | ||
461 | _tMembranes | ||
463 |
_tVol. 12, iss. 11 _v[1157, 9 p.] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _ahigh-entropy alloys | |
610 | 1 | _amembranes | |
610 | 1 | _amicrostructure | |
610 | 1 | _aab initio calculation | |
610 | 1 | _ahydrogen permeability | |
610 | 1 | _aвысокоэнтропийные сплавы | |
610 | 1 | _aмембраны | |
610 | 1 | _aмикроструктура | |
610 | 1 | _aводородопроницаемость | |
701 | 1 |
_aKrotkevich _bD. G. _cphysicist _cengineer of Tomsk Polytechnic University _f1990- _gDmitry Georgievich _2stltpush _3(RuTPU)RU\TPU\pers\46798 |
|
701 | 1 |
_aKashkarov _bE. B. _cPhysicist _cAssociate Professor, Researcher of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences _f1991- _gEgor Borisovich _2stltpush _3(RuTPU)RU\TPU\pers\34949 |
|
701 | 1 |
_aKoptsev _bM. _cphysicist _cEngineer of Tomsk Polytechnic University _f1994- _gMaksim _2stltpush _3(RuTPU)RU\TPU\pers\47505 |
|
701 | 1 |
_aSvyatkin _bL. A. _cphysicist _cAssociate Professor of Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences _f1988- _gLeonid Aleksandrovich _2stltpush _3(RuTPU)RU\TPU\pers\34216 |
|
701 | 1 |
_aTravitsky (Travitzky) _bN. _cspecialist in the field of material science _cProfessor of Tomsk Polytechnic University _f1951- _gNakhum _2stltpush _3(RuTPU)RU\TPU\pers\42461 |
|
701 | 1 |
_aLider _bA. M. _cPhysicist _cProfessor of Tomsk Polytechnic University, Doctor of Technical Sciences _f1976- _gAndrey Markovich _2stltpush _3(RuTPU)RU\TPU\pers\30400 |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИнженерная школа ядерных технологий _bОтделение экспериментальной физики _h7865 _2stltpush _3(RuTPU)RU\TPU\col\23549 |
801 | 2 |
_aRU _b63413507 _c20230306 _gRCR |
|
856 | 4 | _uhttp://earchive.tpu.ru/handle/11683/74795 | |
856 | 4 | _uhttps://doi.org/10.3390/membranes12111157 | |
942 | _cCF |