000 04034nlm1a2200505 4500
001 669254
005 20231030042216.0
035 _a(RuTPU)RU\TPU\network\40494
035 _aRU\TPU\network\39763
090 _a669254
100 _a20230310a2023 k y0engy50 ba
101 0 _aeng
102 _aNL
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aStudy of void space structure and its influence on carbonate reservoir properties: X-ray microtomography, electron microscopy, and well testing
_fD. A. Martyushev, I. N. Ponomareva, A. S. Chukhlov [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aMany carbonate reservoirs containing significant hydrocarbon resources are characterized by complex pore structures and, as a result, heterogeneous distributions of fluids in their pore networks. Accurately assessing the microscopic pore structure characteristics of carbonate rocks and their influence on reservoir properties is essential for the successful development of oil fields. In the studied carbonate reservoirs of three oil fields in the Perm Krai, Russia, complex tectonic activity and multi-stage diagenetic modification have resulted in the formation of a heterogeneous pore network spectrum ranging from macropores to nanometer-scale (<1 ?m) pores. Thin sections and computed tomography were applied to obtain the petrography of carbonate rocks, 2D images of a wide range of pores, and a 3D representation of the pore network. Well testing was used to study the pore network structure at the macrolevel. Combining well testing and laboratory-based core studies allowed the structural features of the reservoirs of the three fields under consideration to be characterized in high detail.
330 _aThe presence of magnesium in the mineral composition of the studied limestone decreased its capacitive characteristics. We identify three fundamentally different void space scenarios: (i) void spaces formed only by primary intercrystalline pores, (ii) much larger secondary pores are also present, and (iii) primary and secondary voids connected by a network of partially healed fractures. Such variations in the structure of void space contribute to varying reservoir behavior. The presence of larger voids and, accordingly, higher initial permeability contributes to intense deformation of the void space and permeability decreases with decreasing pressure. The established patterns in this work explain the characteristic dynamics of well flow rates during field development.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tMarine and Petroleum Geology
463 _tVol. 151
_v[106192, 17 p.]
_d2023
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _apore distribution
610 1 _acaverns
610 1 _afractures
610 1 _apermeability
610 1 _afluid flow
610 1 _apermeability decline rate
610 1 _areservoir pressure
610 1 _areservoir deformation
701 1 _aMartyushev
_bD. A.
_gDmitriy
701 1 _aPonomareva
_bI. N.
_gInna
701 1 _aChukhlov
_bA. S.
_gAndrey
701 1 _aDavoodi
_bSh.
_cspecialist in the field of petroleum engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1990-
_gShadfar
_2stltpush
_3(RuTPU)RU\TPU\pers\46542
701 1 _aOsovetsky
_bB. M.
_gBoris
701 1 _aKazymov
_bK. P.
_gKonstantin
701 0 _aYongfei Yang
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа природных ресурсов
_bЦентр подготовки и переподготовки специалистов нефтегазового дела
_h6159
_2stltpush
_3(RuTPU)RU\TPU\col\23177
801 2 _aRU
_b63413507
_c20230310
_gRCR
856 4 _uhttps://doi.org/10.1016/j.marpetgeo.2023.106192
942 _cCF