000 | 04364nlm1a2200541 4500 | ||
---|---|---|---|
001 | 669366 | ||
005 | 20231030042220.0 | ||
035 | _a(RuTPU)RU\TPU\network\40606 | ||
035 | _aRU\TPU\network\38198 | ||
090 | _a669366 | ||
100 | _a20230403a2022 k y0engy50 ba | ||
101 | 0 | _aeng | |
135 | _adrcn ---uucaa | ||
181 | 0 | _ai | |
182 | 0 | _ab | |
200 | 1 |
_aCell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide _fR. V. Chernozem, I. O. Pary (Pariy), M. A. Surmeneva [et al.] |
|
203 |
_aText _celectronic |
||
300 | _aTitle screen | ||
330 | _aThis is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V?1) and lateral (1.06 ± 0.02 pm V?1) piezoresponse owing to a greater presence of electroactive ?-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications. | ||
333 | _aРежим доступа: по договору с организацией-держателем ресурса | ||
461 | _tAdvanced Healthcare Materials | ||
463 |
_tVol. 12, iss. 8 _v[2201726, 18 p.] _d2022 |
||
610 | 1 | _aэлектронный ресурс | |
610 | 1 | _aтруды учёных ТПУ | |
610 | 1 | _aисследования | |
610 | 1 | _aматриксы | |
610 | 1 | _aоксид графена | |
610 | 1 | _aбиодеградация | |
701 | 1 |
_aChernozem _bR. V. _cphysicist _claboratory assistant of Tomsk Polytechnic University _f1992- _gRoman Viktorovich _2stltpush _3(RuTPU)RU\TPU\pers\36450 |
|
701 | 1 |
_aPary (Pariy) _bI. O. _cphysicist _cengineer of Tomsk Polytechnic University _f1995- _gIgor Olegovich _2stltpush _3(RuTPU)RU\TPU\pers\45219 |
|
701 | 1 |
_aSurmeneva _bM. A. _cspecialist in the field of material science _cengineer-researcher of Tomsk Polytechnic University, Associate Scientist _f1984- _gMaria Alexandrovna _2stltpush _3(RuTPU)RU\TPU\pers\31894 |
|
701 | 1 |
_aShvartsman _bV. V. _gVladimir |
|
701 | 1 |
_aPlanckaert _bG. _gGuillaume |
|
701 | 1 |
_aVerduijn _bJ. _gJoost |
|
701 | 1 |
_aGhysels _bS. _gStef |
|
701 | 1 |
_aAbalymov _bA. A. |
|
701 | 1 |
_aParakhonskiy _bB. V. _gBogdan |
|
701 | 1 |
_aGracey _bE. _gEric |
|
701 | 1 |
_aGoncalves _bA. _gAmanda |
|
701 | 1 |
_aMathur _bS. _gSanjay |
|
701 | 1 |
_aRonsse _bF. _gFrederik |
|
701 | 1 |
_aDepla _bD. |
|
701 | 1 |
_aLupascu _bD. C. _gDoru |
|
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _c(2017- ) _h8120 _2stltpush _3(RuTPU)RU\TPU\col\23537 |
712 | 0 | 2 |
_aНациональный исследовательский Томский политехнический университет _bИсследовательская школа химических и биомедицинских технологий _bМеждународный научно-исследовательский центр "Пьезо- и магнитоэлектрические материалы" _h8902 _2stltpush _3(RuTPU)RU\TPU\col\28005 |
801 | 2 |
_aRU _b63413507 _c20230403 _gRCR |
|
856 | 4 | _uhttps://doi.org/10.1002/adhm.202201726 | |
942 | _cCF |