000 04364nlm1a2200541 4500
001 669366
005 20231030042220.0
035 _a(RuTPU)RU\TPU\network\40606
035 _aRU\TPU\network\38198
090 _a669366
100 _a20230403a2022 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aCell Behavior Changes and Enzymatic Biodegradation of Hybrid Electrospun Poly(3-hydroxybutyrate)-Based Scaffolds with an Enhanced Piezoresponse after the Addition of Reduced Graphene Oxide
_fR. V. Chernozem, I. O. Pary (Pariy), M. A. Surmeneva [et al.]
203 _aText
_celectronic
300 _aTitle screen
330 _aThis is the first comprehensive study of the impact of biodegradation on the structure, surface potential, mechanical and piezoelectric properties of poly(3-hydroxybutyrate) (PHB) scaffolds supplemented with reduced graphene oxide (rGO) as well as cell behavior under static and dynamic mechanical conditions. There is no effect of the rGO addition up to 1.0 wt% on the rate of enzymatic biodegradation of PHB scaffolds for 30 d. The biodegradation of scaffolds leads to the depolymerization of the amorphous phase, resulting in an increase in the degree of crystallinity. Because of more regular dipole order in the crystalline phase, surface potential of all fibers increases after the biodegradation, with a maximum (361 ± 5 mV) after the addition of 1 wt% rGO into PHB as compared to pristine PHB fibers. By contrast, PHB-0.7rGO fibers manifest the strongest effective vertical (0.59 ± 0.03 pm V?1) and lateral (1.06 ± 0.02 pm V?1) piezoresponse owing to a greater presence of electroactive ?-phase. In vitro assays involving primary human fibroblasts reveal equal biocompatibility and faster cell proliferation on PHB-0.7rGO scaffolds compared to pure PHB and nonpiezoelectric polycaprolactone scaffolds. Thus, the developed biodegradable PHB-rGO scaffolds with enhanced piezoresponse are promising for tissue-engineering applications.
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tAdvanced Healthcare Materials
463 _tVol. 12, iss. 8
_v[2201726, 18 p.]
_d2022
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _aисследования
610 1 _aматриксы
610 1 _aоксид графена
610 1 _aбиодеградация
701 1 _aChernozem
_bR. V.
_cphysicist
_claboratory assistant of Tomsk Polytechnic University
_f1992-
_gRoman Viktorovich
_2stltpush
_3(RuTPU)RU\TPU\pers\36450
701 1 _aPary (Pariy)
_bI. O.
_cphysicist
_cengineer of Tomsk Polytechnic University
_f1995-
_gIgor Olegovich
_2stltpush
_3(RuTPU)RU\TPU\pers\45219
701 1 _aSurmeneva
_bM. A.
_cspecialist in the field of material science
_cengineer-researcher of Tomsk Polytechnic University, Associate Scientist
_f1984-
_gMaria Alexandrovna
_2stltpush
_3(RuTPU)RU\TPU\pers\31894
701 1 _aShvartsman
_bV. V.
_gVladimir
701 1 _aPlanckaert
_bG.
_gGuillaume
701 1 _aVerduijn
_bJ.
_gJoost
701 1 _aGhysels
_bS.
_gStef
701 1 _aAbalymov
_bA. A.
701 1 _aParakhonskiy
_bB. V.
_gBogdan
701 1 _aGracey
_bE.
_gEric
701 1 _aGoncalves
_bA.
_gAmanda
701 1 _aMathur
_bS.
_gSanjay
701 1 _aRonsse
_bF.
_gFrederik
701 1 _aDepla
_bD.
701 1 _aLupascu
_bD. C.
_gDoru
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_c(2017- )
_h8120
_2stltpush
_3(RuTPU)RU\TPU\col\23537
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИсследовательская школа химических и биомедицинских технологий
_bМеждународный научно-исследовательский центр "Пьезо- и магнитоэлектрические материалы"
_h8902
_2stltpush
_3(RuTPU)RU\TPU\col\28005
801 2 _aRU
_b63413507
_c20230403
_gRCR
856 4 _uhttps://doi.org/10.1002/adhm.202201726
942 _cCF