000 03922nlm1a2200457 4500
001 669422
005 20231030042222.0
035 _a(RuTPU)RU\TPU\network\40662
035 _aRU\TPU\network\40618
090 _a669422
100 _a20230504a2023 k y0engy50 ba
101 0 _aeng
135 _adrcn ---uucaa
181 0 _ai
182 0 _ab
200 1 _aEffects of water subdroplet location on the start of puffing/micro-explosion in composite multi-component fuel/water droplets
_fG. Castanet, D. V. Antonov, I. A. Zubrilin [et al.]
203 _aText
_celectronic
300 _aTitle screen
320 _a[References: 16 tit.]
330 _aAn earlier reported model for the prediction of the onset of puffing/micro-explosion in composite multi-component water/liquid fuel droplets is generalised to consider the shifting of the water subdroplet relative to the centre of the fuel droplet. The droplet heating and evaporation are described within the Abramzon and Sirignano model. The equations of heat conduction in the droplet and component diffusion inside the fuel shell are solved numerically assuming that the composition and temperature are uniform over the droplet surface but vary with time. The change in the droplet size due to thermal swelling is considered. The verification of the new model is performed by comparing its predictions with those of the previously developed numerical code, based on the analytical solutions to the heat transfer and component diffusion equations, and used at each timestep of the calculations, for the case of a perfectly centred water subdroplet. The coincidence of the results supports both approaches to the problem. The timing of puffing/micro-explosion is then evaluated for droplets of two kerosene surrogates for various positions of the water subdroplet. It is pointed out that shifts of the water subdroplet by less than 20% lead to a reduction in the time to puffing/micro-explosion of less than 5%. This justifies the applicability of the previously developed model that was based on the assumption that a water subdroplet is located exactly in the centre of the fuel droplet. The times to puffing/micro-explosion predicted by the model are validated using the in-house experimental data for kerosene surrogate droplets (SU1: n-decane, iso-octane and methylbenzene; SU12: iso-octane and methylbenzene).
333 _aРежим доступа: по договору с организацией-держателем ресурса
461 _tFuel
463 _tVol. 341
_v[127609, 13 p.]
_d2023
610 1 _aэлектронный ресурс
610 1 _aтруды учёных ТПУ
610 1 _acomposite droplets
610 1 _aheating
610 1 _aevaporation
610 1 _apuffing
610 1 _amicro-explosion
610 1 _amulti-component fuel
610 1 _acomponent diffusion equation
701 1 _aCastanet
_bG.
_gGuillaume
701 1 _aAntonov
_bD. V.
_cspecialist in the field of heat and power engineering
_cResearch Engineer of Tomsk Polytechnic University
_f1996-
_gDmitry Vladimirovich
_2stltpush
_3(RuTPU)RU\TPU\pers\46666
701 1 _aZubrilin
_bI. A.
_gIvan Aleksandrovich
701 1 _aStrizhak
_bP. A.
_cSpecialist in the field of heat power energy
_cDoctor of Physical and Mathematical Sciences (DSc), Professor of Tomsk Polytechnic University (TPU)
_f1985-
_gPavel Alexandrovich
_2stltpush
_3(RuTPU)RU\TPU\pers\30871
701 1 _aSazhin
_bS. S.
_gSergei
712 0 2 _aНациональный исследовательский Томский политехнический университет
_bИнженерная школа энергетики
_bНаучно-образовательный центр И. Н. Бутакова (НОЦ И. Н. Бутакова)
_h8025
_2stltpush
_3(RuTPU)RU\TPU\col\23504
801 2 _aRU
_b63413507
_c20230504
_gRCR
856 4 _uhttps://doi.org/10.1016/j.fuel.2023.127609
942 _cCF